These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 36976239)
1. Bioconversion of Cheese Whey and Food By-Products by Russo GL; Langellotti AL; Verardo V; Martín-García B; Oliviero M; Baselice M; Di Pierro P; Sorrentino A; Viscardi S; Marileo L; Sacchi R; Masi P Mar Drugs; 2023 Mar; 21(3):. PubMed ID: 36976239 [TBL] [Abstract][Full Text] [Related]
2. Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables. Rehmanji M; Nesamma AA; Khan NJ; Fatma T; Jutur PP Biotechnol J; 2022 Oct; 17(10):e2100684. PubMed ID: 35666486 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463. Kolesovs S; Neiberts K; Semjonovs P; Beluns S; Platnieks O; Gaidukovs S Biotechnol J; 2024 Jun; 19(6):e2300529. PubMed ID: 38896375 [TBL] [Abstract][Full Text] [Related]
4. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production. Kadalag NL; Pawar PR; Prakash G Bioresour Technol; 2022 Feb; 346():126544. PubMed ID: 34902489 [TBL] [Abstract][Full Text] [Related]
5. Nutritional Value and Productivity Potential of the Marine Microalgae Lu X; Yang S; He Y; Zhao W; Nie M; Sun H Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330267 [TBL] [Abstract][Full Text] [Related]
6. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Wang H; Zhang Y; Chen L; Cheng W; Liu T Bioprocess Biosyst Eng; 2018 Jul; 41(7):1061-1071. PubMed ID: 29619547 [TBL] [Abstract][Full Text] [Related]
7. Enhanced polyunsaturated fatty acid production using food wastes and biofuels byproducts by an evolved strain of Phaeodactylum tricornutum. Wang X; Balamurugan S; Liu SF; Zhang MM; Yang WD; Liu JS; Li HY; Lin CSK Bioresour Technol; 2020 Jan; 296():122351. PubMed ID: 31708386 [TBL] [Abstract][Full Text] [Related]
8. A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Pang Y; Duan L; Song B; Cui Y; Liu X; Wang T Bioprocess Biosyst Eng; 2024 Dec; 47(12):1951-1972. PubMed ID: 38884655 [TBL] [Abstract][Full Text] [Related]
9. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum. Hamilton ML; Warwick J; Terry A; Allen MJ; Napier JA; Sayanova O PLoS One; 2015; 10(12):e0144054. PubMed ID: 26658738 [TBL] [Abstract][Full Text] [Related]
10. Supercritical Fluid Extraction of Fucoxanthin from the Diatom Ruiz-Domínguez MC; Salinas F; Medina E; Rincón B; Martín MÁ; Gutiérrez MC; Cerezal-Mezquita P Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200656 [No Abstract] [Full Text] [Related]
11. Plastidial acyl carrier protein Δ9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum. Smith R; Jouhet J; Gandini C; Nekrasov V; Marechal E; Napier JA; Sayanova O Plant J; 2021 Jun; 106(5):1247-1259. PubMed ID: 33725374 [TBL] [Abstract][Full Text] [Related]
12. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: Progress in lipid induction techniques towards industry adoption. Cui Y; Thomas-Hall SR; Schenk PM Food Chem; 2019 Nov; 297():124937. PubMed ID: 31253257 [TBL] [Abstract][Full Text] [Related]
13. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335 [TBL] [Abstract][Full Text] [Related]
14. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Gilbert-López B; Barranco A; Herrero M; Cifuentes A; Ibáñez E Food Res Int; 2017 Sep; 99(Pt 3):1056-1065. PubMed ID: 28865617 [TBL] [Abstract][Full Text] [Related]
15. Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum tricornutum. Cui Y; Thomas-Hall SR; Chua ET; Schenk PM J Phycol; 2021 Feb; 57(1):258-268. PubMed ID: 33025589 [TBL] [Abstract][Full Text] [Related]
16. Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms. Fierli D; Aranyos A; Barone ME; Parkes R; Touzet N Appl Microbiol Biotechnol; 2022 Sep; 106(18):6195-6207. PubMed ID: 36040486 [TBL] [Abstract][Full Text] [Related]
17. An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum. Wang Z; Mou J; Qin Z; He Y; Sun Z; Wang X; Lin CSK Bioresour Technol; 2022 Feb; 345():126564. PubMed ID: 34915115 [TBL] [Abstract][Full Text] [Related]
18. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Fierli D; Barone ME; Graceffa V; Touzet N Bioprocess Biosyst Eng; 2022 Dec; 45(12):1967-1977. PubMed ID: 36264371 [TBL] [Abstract][Full Text] [Related]