These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36976762)

  • 21. An experimentally-informed coarse-grained 3-Site-Per-Nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization.
    Hinckley DM; Freeman GS; Whitmer JK; de Pablo JJ
    J Chem Phys; 2013 Oct; 139(14):144903. PubMed ID: 24116642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stacking interaction in the middle and at the end of a DNA helix studied with non-natural nucleotides.
    Nakano S; Oka H; Uotani Y; Uenishi K; Fujii M; Sugimoto N
    Mol Biosyst; 2010 Oct; 6(10):2023-9. PubMed ID: 20694257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR characterization of clustered bistrand abasic site lesions: effect of orientation on their solution structure.
    Lin Z; de los Santos C
    J Mol Biol; 2001 Apr; 308(2):341-52. PubMed ID: 11327771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of conformational features of DNA heteroduplexes containing aldehydic abasic sites.
    Withka JM; Wilde JA; Bolton PH; Mazumder A; Gerlt JA
    Biochemistry; 1991 Oct; 30(41):9931-40. PubMed ID: 1911785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backbone-base inclination as a fundamental determinant of nucleic acid self- and cross-pairing.
    Pallan PS; Lubini P; Bolli M; Egli M
    Nucleic Acids Res; 2007; 35(19):6611-24. PubMed ID: 17905816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.
    Ghobadi AF; Jayaraman A
    Soft Matter; 2016 Feb; 12(8):2276-87. PubMed ID: 26777980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations.
    Negi I; Kathuria P; Sharma P; Wetmore SD
    Phys Chem Chem Phys; 2017 Jun; 19(25):16365-16374. PubMed ID: 28657627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refined solution structure of a DNA heteroduplex containing an aldehydic abasic site.
    Goljer I; Kumar S; Bolton PH
    J Biol Chem; 1995 Sep; 270(39):22980-7. PubMed ID: 7559436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization.
    Schreck JS; Ouldridge TE; Romano F; Šulc P; Shaw LP; Louis AA; Doye JP
    Nucleic Acids Res; 2015 Jul; 43(13):6181-90. PubMed ID: 26056172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large stacking stability of a base pair-mimic nucleotide on the DNA duplex.
    Uotani Y; Nakano S; Nakashima S; Anno Y; Fujii M; Sugimoto N
    Nucleic Acids Res Suppl; 2003; (3):79-80. PubMed ID: 14510389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleic acid structural engineering using pyrene-functionalized 2'-amino-alpha-L-LNA monomers and abasic sites.
    Kumar TS; Madsen AS; Østergaard ME; Wengel J; Hrdlicka PJ
    J Org Chem; 2008 Sep; 73(18):7060-6. PubMed ID: 18710289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine.
    Rachofsky EL; Seibert E; Stivers JT; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):957-67. PubMed ID: 11170417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.
    Suresh G; Priyakumar UD
    J Mol Graph Model; 2015 Sep; 61():150-9. PubMed ID: 26254870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA mismatch-specific base flipping by a bisacridine macrocycle.
    David A; Bleimling N; Beuck C; Lehn JM; Weinhold E; Teulade-Fichou MP
    Chembiochem; 2003 Dec; 4(12):1326-31. PubMed ID: 14661275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and properties of the simplified nucleic acid glycol nucleic acid.
    Meggers E; Zhang L
    Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence-Dependent Mechanism of DNA Oligonucleotide Dehybridization Resolved through Infrared Spectroscopy.
    Sanstead PJ; Stevenson P; Tokmakoff A
    J Am Chem Soc; 2016 Sep; 138(36):11792-801. PubMed ID: 27519555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic analysis of stacking hybridization of oligonucleotides with DNA template.
    Pyshnyi DV; Pyshnaya I; Levina A; Goldberg E; Zarytova V; Knorre D; Ivanova E
    J Biomol Struct Dyn; 2001 Dec; 19(3):555-70. PubMed ID: 11790153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects.
    Stivers JT
    Nucleic Acids Res; 1998 Aug; 26(16):3837-44. PubMed ID: 9685503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleobase analogs for degenerate hybridization devised through conformational pairing analysis.
    Abraham ML; Albalos M; Guettouche T; Friesenhahn MJ; Battersby TR
    Biotechniques; 2007 Nov; 43(5):617-8, 620, 622 passim. PubMed ID: 18072591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice model of oligonucleotide hybridization in solution. I. Model and thermodynamics.
    Araque JC; Panagiotopoulos AZ; Robert MA
    J Chem Phys; 2011 Apr; 134(16):165103. PubMed ID: 21528982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.