These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3697762)

  • 1. Single unit activity of locus coeruleus neurons in the freely moving cat. II. Conditioning and pharmacologic studies.
    Rasmussen K; Jacobs BL
    Brain Res; 1986 Apr; 371(2):335-44. PubMed ID: 3697762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli.
    Rasmussen K; Morilak DA; Jacobs BL
    Brain Res; 1986 Apr; 371(2):324-34. PubMed ID: 3697761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning.
    Giustino TF; Ramanathan KR; Totty MS; Miles OW; Maren S
    J Neurosci; 2020 Jan; 40(4):907-916. PubMed ID: 31801809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge.
    Morilak DA; Fornal CA; Jacobs BL
    Brain Res; 1987 Sep; 422(1):32-9. PubMed ID: 3315119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of cat locus coeruleus noradrenergic neurons during the defense reaction.
    Levine ES; Litto WJ; Jacobs BL
    Brain Res; 1990 Oct; 531(1-2):189-95. PubMed ID: 2289120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge.
    Morilak DA; Fornal CA; Jacobs BL
    Brain Res; 1987 Sep; 422(1):24-31. PubMed ID: 3676783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. I. Thermoregulatory challenge.
    Morilak DA; Fornal CA; Jacobs BL
    Brain Res; 1987 Sep; 422(1):17-23. PubMed ID: 3676779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation of locus coeruleus neurons in monkeys to Pavlovian and operant behaviors.
    Bouret S; Richmond BJ
    J Neurophysiol; 2009 Feb; 101(2):898-911. PubMed ID: 19091919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The convergence of information about rewarding and aversive stimuli in single neurons.
    Morrison SE; Salzman CD
    J Neurosci; 2009 Sep; 29(37):11471-83. PubMed ID: 19759296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single unit activity of noradrenergic neurons in locus coeruleus and serotonergic neurons in the nucleus raphe dorsalis of freely moving cats in relation to the cardiac cycle.
    Morilak DA; Fornal C; Jacobs BL
    Brain Res; 1986 Dec; 399(2):262-70. PubMed ID: 3828763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.
    Snow PJ; Andre P; Pompeiano O
    Arch Ital Biol; 1999 Feb; 137(1):1-28. PubMed ID: 9934431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of buspirone on single unit activity in locus coeruleus and dorsal raphe nucleus in behaving cats.
    Wilkinson LO; Abercrombie ED; Rasmussen K; Jacobs BL
    Eur J Pharmacol; 1987 Apr; 136(1):123-7. PubMed ID: 3595712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol.
    West CH; Boss-Williams KA; Ritchie JC; Weiss JM
    Alcohol; 2015 Nov; 49(7):691-705. PubMed ID: 26496795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli.
    Abercrombie ED; Jacobs BL
    J Neurosci; 1987 Sep; 7(9):2837-43. PubMed ID: 3625275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microinjected morphine suppresses the activity of locus coeruleus noradrenergic neurons in freely moving cats.
    Abercrombie ED; Levine ES; Jacobs BL
    Neurosci Lett; 1988 Apr; 86(3):334-9. PubMed ID: 3380325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task.
    Kane GA; Vazey EM; Wilson RC; Shenhav A; Daw ND; Aston-Jones G; Cohen JD
    Cogn Affect Behav Neurosci; 2017 Dec; 17(6):1073-1083. PubMed ID: 28900892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of neuronal reactions during classical and instrumental conditioning under similar conditions.
    Tsitolovsky L; Babkina N; Shvedov A
    Neurobiol Learn Mem; 2004 Jan; 81(1):82-95. PubMed ID: 14670362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical activity of the reticular formation during aversive and appetitive conditioning in rats.
    Irisawa N; Iwasaki T
    Brain Res; 1984 Apr; 296(2):211-23. PubMed ID: 6322923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli.
    Abercrombie ED; Jacobs BL
    J Neurosci; 1987 Sep; 7(9):2844-8. PubMed ID: 3625276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic inputs from locus coeruleus to posterior ventral tegmental area are essential to support ethanol reinforcement.
    Shelkar GP; Kumar S; Singru PS; Subhedar NK; Kokare DM
    Addict Biol; 2017 Mar; 22(2):291-302. PubMed ID: 26549324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.