These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36977874)

  • 1. Transport and removal mechanism of benzene by Tradescantia zebrina Bosse and Epipremnum aureum (Linden ex André) G.S. Bunting in air-plant-solution system.
    Li X; Hu Y; Li D; Su Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58282-58294. PubMed ID: 36977874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of formaldehyde by the stems of Epipremnum aureum and Rohdea japonica.
    Zuo L; Wu D; Yu L; Yuan Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11445-11454. PubMed ID: 34537936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on the purification capacity of potted plants on low-concentration carbon monoxide in indoor environment.
    Zhu J; Liu J; He X; Wang L; Liu X; Yang J; Sun H; Azhar N; Oduro NB
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):6316-6331. PubMed ID: 38146024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greatly Enhanced Removal of Volatile Organic Carcinogens by a Genetically Modified Houseplant, Pothos Ivy ( Epipremnum aureum) Expressing the Mammalian Cytochrome P450 2e1 Gene.
    Zhang L; Routsong R; Strand SE
    Environ Sci Technol; 2019 Jan; 53(1):325-331. PubMed ID: 30565461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.
    Wang Z; Pei J; Zhang JS
    J Hazard Mater; 2014 Sep; 280():235-43. PubMed ID: 25164387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially toxic elements capture by an active living wall in indoor environments: Effect of species in air phytoremediation.
    Rossini-Oliva S; Montiel de La Cruz JM; Fernández-Espinosa AJ; Fernández-Cañero R; Fernández-Cabanás VM; Pérez Urrestarazu L
    Chemosphere; 2023 Nov; 340():139799. PubMed ID: 37574085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants.
    Liang H; Zhao S; Liu K; Su Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):193-201. PubMed ID: 30596331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonality and forest edge as drivers of Tradescantia zebrina Hort. ex Bosse invasion in the Atlantic Forest.
    Castro WAC; Luz RC; Peres CK
    Braz J Biol; 2021; 82():e238403. PubMed ID: 33825758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake, transport and accumulation of nicotine by the Golden Potho (Epipremnum aureum): the central role of root pressure.
    Weidner M; Martins R; Müller A; Simon J; Schmitz H
    J Plant Physiol; 2005 Feb; 162(2):139-50. PubMed ID: 15779824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the ability of indoor plants to absorb and purify benzene pollution.
    Li D; Wang H; Gao Q; Lu M
    Sci Rep; 2024 Jun; 14(1):13169. PubMed ID: 38849491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous influence of light and CO
    Zuo L; Wu D; Deng M; He D; Yuan Y
    Environ Sci Pollut Res Int; 2023 May; 30(23):64191-64202. PubMed ID: 37060414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of arrangement and quantity of epipremnum aureum on work efficiency and subjective perceptions.
    Zuo L; Wu D; Yuan Y; Li H; Yu L
    Environ Sci Pollut Res Int; 2020 May; 27(15):17804-17814. PubMed ID: 32162222
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Duangupama T; Intaraudom C; Pittayakhajonwut P; Tadtong S; Thawai C
    Int J Syst Evol Microbiol; 2022 Jan; 72(1):. PubMed ID: 35038290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum.
    Naharro R; Esbrí JM; Amorós JA; Higueras PL
    Environ Geochem Health; 2020 Oct; 42(10):3185-3198. PubMed ID: 32303945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-based remediation of air pollution: A review.
    Han Y; Lee J; Haiping G; Kim KH; Wanxi P; Bhardwaj N; Oh JM; Brown RJC
    J Environ Manage; 2022 Jan; 301():113860. PubMed ID: 34626947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karyotypes and Giemsa C-banding patterns of Zebrina pendula, Z. purpusii and Setcreasea purpurea, compared with those of Tradescantia ohiensis.
    Sakurai T; Ichikawa S
    Genes Genet Syst; 2001 Aug; 76(4):235-42. PubMed ID: 11732632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15-Lipoxygenase inhibition of Commelina benghalensis, Tradescantia fluminensis, Tradescantia zebrina.
    Alaba CS; Chichioco-Hernandez CL
    Asian Pac J Trop Biomed; 2014 Mar; 4(3):184-8. PubMed ID: 25182435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can ornamental potted plants remove volatile organic compounds from indoor air? A review.
    Dela Cruz M; Christensen JH; Thomsen JD; Müller R
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):13909-28. PubMed ID: 25056742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoor formaldehyde removal by three species of Chlorophytum comosum under dynamic fumigation system: part 2-plant recovery.
    Li J; Zhong J; Liu Q; Yang H; Wang Z; Li Y; Zhang W; Agranovski I
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8453-8465. PubMed ID: 33063207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of fine particulate matter (PM
    Ryu J; Kim JJ; Byeon H; Go T; Lee SJ
    Environ Pollut; 2019 Feb; 245():253-259. PubMed ID: 30439635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.