These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 36978738)
41. Impacts of Arctic diesel contamination on microbial community composition and degradative gene abundance during hydrocarbon biodegradation with and without nutrients: A case study of seven sub-Arctic soils. Kundu A; Harrisson O; Ghoshal S Sci Total Environ; 2023 May; 871():161777. PubMed ID: 36709895 [TBL] [Abstract][Full Text] [Related]
43. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Lea-Smith DJ; Biller SJ; Davey MP; Cotton CA; Perez Sepulveda BM; Turchyn AV; Scanlan DJ; Smith AG; Chisholm SW; Howe CJ Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13591-6. PubMed ID: 26438854 [TBL] [Abstract][Full Text] [Related]
44. Biodegradation of petroleum hydrocarbons by Neosartorya sp. BL4. Yi T; Lee EH; Park H; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1763-8. PubMed ID: 22175880 [TBL] [Abstract][Full Text] [Related]
45. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. McKew BA; Coulon F; Osborn AM; Timmis KN; McGenity TJ Environ Microbiol; 2007 Jan; 9(1):165-76. PubMed ID: 17227421 [TBL] [Abstract][Full Text] [Related]
46. Promoting the treatment of crude oil alkane pollution through the study of enzyme activity. Meng L; Li W; Bao M; Sun P Int J Biol Macromol; 2018 Nov; 119():708-716. PubMed ID: 30055278 [TBL] [Abstract][Full Text] [Related]
47. Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Wang J; Sandoval K; Ding Y; Stoeckel D; Minard-Smith A; Andersen G; Dubinsky EA; Atlas R; Gardinali P Sci Total Environ; 2016 Jul; 557-558():453-68. PubMed ID: 27017076 [TBL] [Abstract][Full Text] [Related]
48. Salt selected for hydrocarbon-degrading bacteria and enhanced hydrocarbon biodegradation in slurry bioreactors. Akbari A; David C; Rahim AA; Ghoshal S Water Res; 2021 Sep; 202():117424. PubMed ID: 34332190 [TBL] [Abstract][Full Text] [Related]
49. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Shahi A; Aydin S; Ince B; Ince O Ecotoxicol Environ Saf; 2016 Mar; 125():153-60. PubMed ID: 26685788 [TBL] [Abstract][Full Text] [Related]
50. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Atakpa EO; Zhou H; Jiang L; Ma Y; Liang Y; Li Y; Zhang D; Zhang C Chemosphere; 2022 Mar; 290():133337. PubMed ID: 34933030 [TBL] [Abstract][Full Text] [Related]
51. Crystal Structure of TetR Family Repressor AlkX from Dietzia sp. Strain DQ12-45-1b Implicated in Biodegradation of Liang JL; Gao Y; He Z; Nie Y; Wang M; JiangYang JH; Zhang XC; Shu WS; Wu XL Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821550 [No Abstract] [Full Text] [Related]
52. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes - Potential for use in detection of marine oil pollution. Bagi A; Knapik K; Baussant T Sci Total Environ; 2022 Mar; 810():152238. PubMed ID: 34896501 [TBL] [Abstract][Full Text] [Related]
53. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Yang HY; Jia RB; Chen B; Li L Environ Sci Pollut Res Int; 2014 Sep; 21(18):11086-93. PubMed ID: 24859700 [TBL] [Abstract][Full Text] [Related]
54. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
55. Construction of long-chain alkane degrading bacteria and its application in bioremediation of crude oil pollution. Meng L; Bao M; Sun P Int J Biol Macromol; 2018 Nov; 119():524-532. PubMed ID: 30041039 [TBL] [Abstract][Full Text] [Related]
56. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Coulon F; McKew BA; Osborn AM; McGenity TJ; Timmis KN Environ Microbiol; 2007 Jan; 9(1):177-86. PubMed ID: 17227422 [TBL] [Abstract][Full Text] [Related]
57. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Tan B; Dong X; Sensen CW; Foght J Genome; 2013 Oct; 56(10):599-611. PubMed ID: 24237341 [TBL] [Abstract][Full Text] [Related]
58. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil]. Yang Q; Wu ML; Nie MQ; Wang TT; Zhang MH Huan Jing Ke Xue; 2015 May; 36(5):1856-63. PubMed ID: 26314140 [TBL] [Abstract][Full Text] [Related]
59. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. Sierra-Garcia IN; Belgini DRB; Torres-Ballesteros A; Paez-Espino D; Capilla R; Santos Neto EV; Gray N; de Oliveira VM Sci Total Environ; 2020 May; 715():136646. PubMed ID: 32014760 [TBL] [Abstract][Full Text] [Related]
60. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. Cao Y; Zhang B; Cai Q; Zhu Z; Liu B; Dong G; Greer CW; Lee K; Chen B Environ Pollut; 2022 Nov; 313():120177. PubMed ID: 36116568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]