BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36978925)

  • 1. Loss of Peroxiredoxin IV Protects Mice from Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Cancer Development.
    Thapa P; Jiang H; Ding N; Hao Y; Alshahrani A; Lee EY; Fujii J; Wei Q
    Antioxidants (Basel); 2023 Mar; 12(3):. PubMed ID: 36978925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of sulfiredoxin renders mice resistant to azoxymethane/dextran sulfate sodium-induced colon carcinogenesis.
    Wei Q; Jiang H; Baker A; Dodge LK; Gerard M; Young MR; Toledano MB; Colburn NH
    Carcinogenesis; 2013 Jun; 34(6):1403-10. PubMed ID: 23393226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Role of the Sulfiredoxin-Peroxiredoxin IV Axis in Urethane-Induced Non-Small Cell Lung Cancer.
    Hao Y; Jiang H; Thapa P; Ding N; Alshahrani A; Fujii J; Toledano MB; Wei Q
    Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36829926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of 17β-estradiol on colorectal cancer development after azoxymethane/dextran sulfate sodium treatment of ovariectomized mice.
    Song CH; Kim N; Lee SM; Nam RH; Choi SI; Kang SR; Shin E; Lee DH; Lee HN; Surh YJ
    Biochem Pharmacol; 2019 Jun; 164():139-151. PubMed ID: 30981879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver.
    Bae SH; Sung SH; Cho EJ; Lee SK; Lee HE; Woo HA; Yu DY; Kil IS; Rhee SG
    Hepatology; 2011 Mar; 53(3):945-53. PubMed ID: 21319188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin Suppresses AOM/DSS-Induced Colon Carcinogenesis through Its Anti-Inflammation Effects in Mice.
    Lin R; Piao M; Song Y; Liu C
    J Immunol Res; 2020; 2020():9242601. PubMed ID: 32537472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The germ-free mice monocolonization with
    Lee YP; Chiu CC; Lin TJ; Hung SW; Huang WC; Chiu CF; Huang YT; Chen YH; Chen TH; Chuang HL
    Immunopharmacol Immunotoxicol; 2019 Apr; 41(2):207-213. PubMed ID: 30706742
    [No Abstract]   [Full Text] [Related]  

  • 8. EGFR in Tumor-Associated Myeloid Cells Promotes Development of Colorectal Cancer in Mice and Associates With Outcomes of Patients.
    Srivatsa S; Paul MC; Cardone C; Holcmann M; Amberg N; Pathria P; Diamanti MA; Linder M; Timelthaler G; Dienes HP; Kenner L; Wrba F; Prager GW; Rose-John S; Eferl R; Liguori G; Botti G; Martinelli E; Greten FR; Ciardiello F; Sibilia M
    Gastroenterology; 2017 Jul; 153(1):178-190.e10. PubMed ID: 28400195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S100A4 promotes colon inflammation and colitis-associated colon tumorigenesis.
    Zhang J; Hou S; Gu J; Tian T; Yuan Q; Jia J; Qin Z; Chen Z
    Oncoimmunology; 2018; 7(8):e1461301. PubMed ID: 30221056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice.
    Kim HY; Song JL; Chang HK; Kang SA; Park KY
    J Med Food; 2014 Aug; 17(8):833-41. PubMed ID: 25029638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Estradiol in an Azoxymethane/Dextran Sulfate Sodium-Treated Mouse Model of Colorectal Cancer: Implication for Sex Difference in Colorectal Cancer Development.
    Son HJ; Sohn SH; Kim N; Lee HN; Lee SM; Nam RH; Park JH; Song CH; Shin E; Na HY; Kim JS; Lee DH; Surh YJ
    Cancer Res Treat; 2019 Apr; 51(2):632-648. PubMed ID: 30064198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dro1/Ccdc80 inactivation promotes AOM/DSS-induced colorectal carcinogenesis and aggravates colitis by DSS in mice.
    Grill JI; Neumann J; Ofner A; Marschall MK; Zierahn H; Herbst A; Wolf E; Kolligs FT
    Carcinogenesis; 2018 Sep; 39(9):1176-1184. PubMed ID: 29901779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triticum aestivum Sprouts Extract Inhibits Azoymethane (AOM)/Dextran Sodium Sulfate (DSS)-Induced Colon Carcinogenesis in Mice.
    Ki HH; Lee JH; Lee HY; Lee YM; Kim DK
    Nutr Cancer; 2018; 70(6):928-937. PubMed ID: 30273050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cells enhance stem cell mutagenesis in the mouse colon.
    Whetstone RD; Gold B
    Mutat Res; 2015 Apr; 774():1-5. PubMed ID: 25770826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient receptor potential channel stimulation induced oxidative stress and apoptosis in the colon of mice with colitis-associated colon cancer: modulator role of Sambucus ebulus L.
    Kaya MM; Kaya İ; Nazıroğlu M
    Mol Biol Rep; 2023 Mar; 50(3):2207-2220. PubMed ID: 36565417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate.
    Suzuki R; Miyamoto S; Yasui Y; Sugie S; Tanaka T
    BMC Cancer; 2007 May; 7():84. PubMed ID: 17506908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear Factor Erythroid 2-related Factor 2 Knockout Suppresses the Development of Aggressive Colorectal Cancer Formation Induced by Azoxymethane/Dextran Sulfate Sodium-Treatment in Female Mice.
    Song CH; Kim N; Nam RH; Choi SI; Kang C; Jang JY; Nho H; Shin E; Lee HN
    J Cancer Prev; 2021 Mar; 26(1):41-53. PubMed ID: 33842405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of selenium on colon carcinogenesis induced by azoxymethane and dextran sodium sulfate in mouse model with high-iron diet.
    Kim JH; Hue JJ; Kang BS; Park H; Nam SY; Yun YW; Kim JS; Lee BJ
    Lab Anim Res; 2011 Mar; 27(1):9-18. PubMed ID: 21826154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MUTYH base excision repair gene protects against inflammation-associated colorectal carcinogenesis.
    Grasso F; Di Meo S; De Luca G; Pasquini L; Rossi S; Boirivant M; Biffoni M; Bignami M; Di Carlo E
    Oncotarget; 2015 Aug; 6(23):19671-84. PubMed ID: 26109431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astragaloside IV inhibits AOM/DSS-induced colitis-associated tumorigenesis via activation of PPARγ signaling in mice.
    Liang J; Yang C; Li P; Zhang M; Xie X; Xie X; Chen Y; Wang Q; Zhou L; Luo X
    Phytomedicine; 2023 Dec; 121():155116. PubMed ID: 37776619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.