These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 36979003)
1. Inhibition of Pyruvate Dehydrogenase in the Heart as an Initiating Event in the Development of Diabetic Cardiomyopathy. Elnwasany A; Ewida HA; Szweda PA; Szweda LI Antioxidants (Basel); 2023 Mar; 12(3):. PubMed ID: 36979003 [TBL] [Abstract][Full Text] [Related]
2. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart. Crewe C; Kinter M; Szweda LI PLoS One; 2013; 8(10):e77280. PubMed ID: 24116221 [TBL] [Abstract][Full Text] [Related]
3. Cardiac-Specific Deletion of Pyruvate Dehydrogenase Impairs Glucose Oxidation Rates and Induces Diastolic Dysfunction. Gopal K; Almutairi M; Al Batran R; Eaton F; Gandhi M; Ussher JR Front Cardiovasc Med; 2018; 5():17. PubMed ID: 29560354 [TBL] [Abstract][Full Text] [Related]
4. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046 [TBL] [Abstract][Full Text] [Related]
5. Pyruvate Dehydrogenase Complex and Glucose Oxidation as a Therapeutic Target in Diabetic Heart Disease. Tabatabaei Dakhili SA; Greenwell AA; Ussher JR J Lipid Atheroscler; 2023 Jan; 12(1):47-57. PubMed ID: 36761067 [TBL] [Abstract][Full Text] [Related]
6. Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Vadvalkar SS; Baily CN; Matsuzaki S; West M; Tesiram YA; Humphries KM Biochem J; 2013 Jan; 449(1):253-61. PubMed ID: 23030792 [TBL] [Abstract][Full Text] [Related]
7. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice. Schafer C; Young ZT; Makarewich CA; Elnwasany A; Kinter C; Kinter M; Szweda LI J Biol Chem; 2018 May; 293(18):6915-6924. PubMed ID: 29540486 [TBL] [Abstract][Full Text] [Related]
9. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508 [TBL] [Abstract][Full Text] [Related]
10. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Karwi QG; Sun Q; Lopaschuk GD Cells; 2021 Nov; 10(11):. PubMed ID: 34831481 [TBL] [Abstract][Full Text] [Related]
11. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study. Le Page LM; Rider OJ; Lewis AJ; Ball V; Clarke K; Johansson E; Carr CA; Heather LC; Tyler DJ Diabetes; 2015 Aug; 64(8):2735-43. PubMed ID: 25795215 [TBL] [Abstract][Full Text] [Related]
12. Rationale for a metabolic approach in diabetic coronary patients. Stanley WC Coron Artery Dis; 2005 Nov; 16 Suppl 1():S11-5. PubMed ID: 16340398 [TBL] [Abstract][Full Text] [Related]
13. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Basu R; Oudit GY; Wang X; Zhang L; Ussher JR; Lopaschuk GD; Kassiri Z Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2096-108. PubMed ID: 19801494 [TBL] [Abstract][Full Text] [Related]
14. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. Gopal K; Saleme B; Al Batran R; Aburasayn H; Eshreif A; Ho KL; Ma WK; Almutairi M; Eaton F; Gandhi M; Park EA; Sutendra G; Ussher JR Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H479-H490. PubMed ID: 28687587 [TBL] [Abstract][Full Text] [Related]
16. Stimulating myocardial pyruvate dehydrogenase activity fails to alleviate cardiac abnormalities in a mouse model of human Barth syndrome. Greenwell AA; Tabatabaei Dakhili SA; Gopal K; Saed CT; Chan JSF; Kazungu Mugabo N; Zhabyeyev P; Eaton F; Kruger J; Oudit GY; Ussher JR Front Cardiovasc Med; 2022; 9():997352. PubMed ID: 36211560 [TBL] [Abstract][Full Text] [Related]
17. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Lou PH; Lucchinetti E; Scott KY; Huang Y; Gandhi M; Hersberger M; Clanachan AS; Lemieux H; Zaugg M Physiol Rep; 2017 Aug; 5(16):. PubMed ID: 28830979 [TBL] [Abstract][Full Text] [Related]
18. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Calvani M; Reda E; Arrigoni-Martelli E Basic Res Cardiol; 2000 Apr; 95(2):75-83. PubMed ID: 10826498 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Mansor LS; Sousa Fialho MDL; Yea G; Coumans WA; West JA; Kerr M; Carr CA; Luiken JJFP; Glatz JFC; Evans RD; Griffin JL; Tyler DJ; Clarke K; Heather LC Cardiovasc Res; 2017 Jun; 113(7):737-748. PubMed ID: 28419197 [TBL] [Abstract][Full Text] [Related]
20. Effects of increased cardiac work on pyruvate dehydrogenase activity in hearts from diabetic animals. Kobayashi K; Neely JR J Mol Cell Cardiol; 1983 Jun; 15(6):347-57. PubMed ID: 6876184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]