These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36979223)

  • 21. Amygdala-prefrontal cortical circuitry regulates effort-based decision making.
    Floresco SB; Ghods-Sharifi S
    Cereb Cortex; 2007 Feb; 17(2):251-60. PubMed ID: 16495432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.
    Wang S; Hu SH; Shi Y; Li BM
    Learn Behav; 2017 Mar; 45(1):89-99. PubMed ID: 27604387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making.
    Cohen MX; Heller AS; Ranganath C
    Brain Res Cogn Brain Res; 2005 Apr; 23(1):61-70. PubMed ID: 15795134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistent cocaine-induced reversal learning deficits are associated with altered limbic cortico-striatal local field potential synchronization.
    McCracken CB; Grace AA
    J Neurosci; 2013 Oct; 33(44):17469-82. PubMed ID: 24174680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
    Klein-Flügge MC; Kennerley SW; Friston K; Bestmann S
    J Neurosci; 2016 Sep; 36(39):10002-15. PubMed ID: 27683898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making.
    Bercovici DA; Princz-Lebel O; Tse MT; Moorman DE; Floresco SB
    eNeuro; 2018; 5(6):. PubMed ID: 30627636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impairment of cost-benefit decision making in morphine-dependent rats is partly mediated via the alteration of BDNF and p-CREB levels in the nucleus accumbens.
    Fatahi Z; Zeinaddini-Meymand A; Karimi S; Khodagholi F; Haghparast A
    Pharmacol Biochem Behav; 2020 Jul; 194():172952. PubMed ID: 32428531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiological measures of conflict and reward processing are associated with decisions to engage in physical effort.
    Umemoto A; Lin H; Holroyd CB
    Psychophysiology; 2023 Feb; 60(2):e14176. PubMed ID: 36097887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cannabinoids induce apathetic and impulsive patterns of choice through CB1 receptors and TRPV1 channels.
    Fatahi Z; Reisi Z; Rainer G; Haghparast A; Khani A
    Neuropharmacology; 2018 May; 133():75-84. PubMed ID: 29355640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemogenetic Modulation and Single-Photon Calcium Imaging in Anterior Cingulate Cortex Reveal a Mechanism for Effort-Based Decisions.
    Hart EE; Blair GJ; O'Dell TJ; Blair HT; Izquierdo A
    J Neurosci; 2020 Jul; 40(29):5628-5643. PubMed ID: 32527984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision making.
    Schweimer J; Hauber W
    Learn Mem; 2006; 13(6):777-82. PubMed ID: 17142306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orexin 1 receptors in the anterior cingulate and orbitofrontal cortex regulate cost and benefit decision-making.
    Karimi S; Hamidi G; Fatahi Z; Haghparast A
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 89():227-235. PubMed ID: 30222989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making.
    Li YS; Nassar MR; Kable JW; Gold JI
    J Neurosci; 2019 Aug; 39(34):6668-6683. PubMed ID: 31217329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study.
    Pistis M; Muntoni AL; Pillolla G; Gessa GL
    Eur J Neurosci; 2002 Jun; 15(11):1795-802. PubMed ID: 12081659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural and neurochemical basis of reinforcement-guided decision making.
    Khani A; Rainer G
    J Neurophysiol; 2016 Aug; 116(2):724-41. PubMed ID: 27226454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making.
    van Holstein M; MacLeod PE; Floresco SB
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109830. PubMed ID: 31811876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effort-based decision making in the rat: an [18F]fluorodeoxyglucose micro positron emission tomography study.
    Endepols H; Sommer S; Backes H; Wiedermann D; Graf R; Hauber W
    J Neurosci; 2010 Jul; 30(29):9708-14. PubMed ID: 20660253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct Medial Orbitofrontal-Striatal Circuits Support Dissociable Component Processes of Risk/Reward Decision-Making.
    Jenni NL; Rutledge G; Floresco SB
    J Neurosci; 2022 Mar; 42(13):2743-2755. PubMed ID: 35135853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic influences on functional connectivity associated with feedback processing and prediction error: Phase coupling of theta-band oscillations in twins.
    Demiral ŞB; Golosheykin S; Anokhin AP
    Int J Psychophysiol; 2017 May; 115():133-141. PubMed ID: 28043892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.