These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 36979382)

  • 81. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring.
    Aubert P; Oleynikova E; Rizvi H; Ndjim M; Le Berre-Scoul C; Grohard PA; Chevalier J; Segain JP; Le Drean G; Neunlist M; Boudin H
    FASEB J; 2019 Jan; 33(1):770-781. PubMed ID: 30067379
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enteric Control of the Sympathetic Nervous System.
    Hibberd T; Spencer NJ; Brookes S; Costa M; Yew WP
    Adv Exp Med Biol; 2022; 1383():89-103. PubMed ID: 36587149
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system.
    Kabouridis PS; Lasrado R; McCallum S; Chng SH; Snippert HJ; Clevers H; Pettersson S; Pachnis V
    Gut Microbes; 2015; 6(6):398-403. PubMed ID: 26558327
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Effects and pathophysiological significance of intestinal flora on the enteric neuro-endocrine-immune system].
    Xu HN; Cai ZZ; Wang Y; Wu DE; Rong WF; Zhang GH
    Sheng Li Xue Bao; 2020 Jun; 72(3):347-360. PubMed ID: 32572432
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Control of gastrointestinal motility by the "gut brain"--the enteric nervous system.
    Schemann M
    J Pediatr Gastroenterol Nutr; 2005 Sep; 41 Suppl 1():S4-6. PubMed ID: 16131964
    [TBL] [Abstract][Full Text] [Related]  

  • 86. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges.
    Young HM; Stamp LA; McKeown SJ
    Adv Exp Med Biol; 2016; 891():53-62. PubMed ID: 27379634
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Principles and clinical implications of the brain-gut-enteric microbiota axis.
    Rhee SH; Pothoulakis C; Mayer EA
    Nat Rev Gastroenterol Hepatol; 2009 May; 6(5):306-14. PubMed ID: 19404271
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis.
    Spear ET; Holt EA; Joyce EJ; Haag MM; Mawe SM; Hennig GW; Lavoie B; Applebee AM; Teuscher C; Mawe GM
    Neurogastroenterol Motil; 2018 Sep; 30(9):e13349. PubMed ID: 29644797
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility.
    Spencer NJ; Hu H
    Nat Rev Gastroenterol Hepatol; 2020 Jun; 17(6):338-351. PubMed ID: 32152479
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Role of Gut Microbiota-Gut Hormone Axis in the Pathophysiology of Functional Gastrointestinal Disorders.
    Fukui H; Xu X; Miwa H
    J Neurogastroenterol Motil; 2018 Jul; 24(3):367-386. PubMed ID: 29969855
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease.
    Collins SM; Bercik P
    Gastroenterology; 2009 May; 136(6):2003-14. PubMed ID: 19457424
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease.
    Dogra N; Mani RJ; Katare DP
    Cell Mol Neurobiol; 2022 Mar; 42(2):315-332. PubMed ID: 33649989
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Influence of Commensal Microbiota on the Enteric Nervous System and Its Role in Neurodegenerative Diseases.
    Endres K; Schäfer KH
    J Innate Immun; 2018; 10(3):172-180. PubMed ID: 29742516
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System.
    Doroszkiewicz J; Groblewska M; Mroczko B
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576191
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems.
    Legan TB; Lavoie B; Mawe GM
    Neurogastroenterol Motil; 2022 Oct; 34(10):e14346. PubMed ID: 35246905
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Gut feelings: the microbiota-gut-brain axis on steroids.
    So SY; Savidge TC
    Am J Physiol Gastrointest Liver Physiol; 2022 Jan; 322(1):G1-G20. PubMed ID: 34730020
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Novel functional roles for enteric glia in the gastrointestinal tract.
    Gulbransen BD; Sharkey KA
    Nat Rev Gastroenterol Hepatol; 2012 Nov; 9(11):625-32. PubMed ID: 22890111
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The enteric nervous system promotes intestinal health by constraining microbiota composition.
    Rolig AS; Mittge EK; Ganz J; Troll JV; Melancon E; Wiles TJ; Alligood K; Stephens WZ; Eisen JS; Guillemin K
    PLoS Biol; 2017 Feb; 15(2):e2000689. PubMed ID: 28207737
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract.
    Sharkey KA; Savidge TC
    Auton Neurosci; 2014 Apr; 181():94-106. PubMed ID: 24412639
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Use of Bioelectronics in the Gastrointestinal Tract.
    Miller L; Farajidavar A; Vegesna A
    Cold Spring Harb Perspect Med; 2019 Sep; 9(9):. PubMed ID: 30249600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.