These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 36979401)
21. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Ma L; Xie X; Liu H; Huang Y; Wu H; Jiang M; Xu P; Ye X; Zhou C Theranostics; 2020; 10(3):1373-1390. PubMed ID: 31938070 [TBL] [Abstract][Full Text] [Related]
22. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. Datta A; Kundu P; Bhunia A J Colloid Interface Sci; 2016 Jan; 461():335-345. PubMed ID: 26407061 [TBL] [Abstract][Full Text] [Related]
23. Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus. Nizer WSDC; Ferraz AC; Moraes TFS; Lima WG; Santos JPD; Duarte LP; Ferreira JMS; de Brito Magalhães CL; Vieira-Filho SA; Andrade ACDSP; Rodrigues RAL; Abrahão JS; Magalhães JC J Ethnopharmacol; 2021 Feb; 266():113423. PubMed ID: 33007390 [TBL] [Abstract][Full Text] [Related]
24. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Oren Z; Shai Y Eur J Biochem; 1996 Apr; 237(1):303-10. PubMed ID: 8620888 [TBL] [Abstract][Full Text] [Related]
25. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries. Flachbartova Z; Pulzova L; Bencurova E; Potocnakova L; Comor L; Bednarikova Z; Bhide M Microbiol Res; 2016; 188-189():34-41. PubMed ID: 27296960 [TBL] [Abstract][Full Text] [Related]
28. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against Gram-negative bacteria. Dokla EME; Abutaleb NS; Milik SN; Kandil EAEA; Qassem OM; Elgammal Y; Nasr M; McPhillie MJ; Abouzid KAM; Seleem MN; Imming P; Adel M Eur J Med Chem; 2023 Feb; 247():115040. PubMed ID: 36584632 [TBL] [Abstract][Full Text] [Related]
29. Modification of phage display technique for improved screening of high-affinity binding peptides. Yun S; Lee S; Park JP; Choo J; Lee EK J Biotechnol; 2019 Jan; 289():88-92. PubMed ID: 30496775 [TBL] [Abstract][Full Text] [Related]
30. Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs. Mirski T; Lidia M; Nakonieczna A; Gryko R Ann Agric Environ Med; 2019 Jun; 26(2):203-209. PubMed ID: 31232046 [TBL] [Abstract][Full Text] [Related]
31. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Ajingi YS; Muhammad A; Khunrae P; Rattanarojpong T; Pattanapanyasat K; Sutthibutpong T; Jongruja N Curr Pharm Biotechnol; 2021; 22(9):1216-1227. PubMed ID: 33081682 [TBL] [Abstract][Full Text] [Related]
32. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Andrä J; Berninghausen O; Leippe M Med Microbiol Immunol; 2001 Apr; 189(3):169-73. PubMed ID: 11388616 [TBL] [Abstract][Full Text] [Related]
33. Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets. Nakazawa H; Seta Y; Hirose T; Masuda Y; Umetsu M Protein Pept Lett; 2018; 25(1):68-75. PubMed ID: 29210630 [TBL] [Abstract][Full Text] [Related]
34. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. Elisha IL; Botha FS; McGaw LJ; Eloff JN BMC Complement Altern Med; 2017 Feb; 17(1):133. PubMed ID: 28241818 [TBL] [Abstract][Full Text] [Related]
35. A Novel Antimicrobial Peptide Spampcin Jiang M; Chen R; Zhang J; Chen F; Wang KJ Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362111 [TBL] [Abstract][Full Text] [Related]
36. ABP-Finder: A Tool to Identify Antibacterial Peptides and the Gram-Staining Type of Targeted Bacteria. Ruiz-Blanco YB; Agüero-Chapin G; Romero-Molina S; Antunes A; Olari LR; Spellerberg B; Münch J; Sanchez-Garcia E Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551365 [TBL] [Abstract][Full Text] [Related]
37. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. Deslouches B; Hasek ML; Craigo JK; Steckbeck JD; Montelaro RC J Med Microbiol; 2016 Jun; 65(6):554-565. PubMed ID: 27046192 [TBL] [Abstract][Full Text] [Related]
38. Hydrophobic modification improves the delivery of cell-penetrating peptides to eliminate intracellular pathogens in animals. Tang Q; Tan P; Dai Z; Wang T; Xu S; Ding Y; Jin J; Zhang X; Zhang Y; Zhou C; Yue Z; Fu H; Yan J; Ma X Acta Biomater; 2023 Feb; 157():210-224. PubMed ID: 36503077 [TBL] [Abstract][Full Text] [Related]
39. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807 [TBL] [Abstract][Full Text] [Related]
40. Selection of phage displayed peptides from a random 10-mer library recognising a peptide target. Bremnes T; Lauvrak V; Lindqvist B; Bakke O Immunotechnology; 1998 Jun; 4(1):21-8. PubMed ID: 9661811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]