These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36979535)

  • 21. Polymerization-Enhanced Two-Photon Photosensitization for Precise Photodynamic Therapy.
    Wang S; Wu W; Manghnani P; Xu S; Wang Y; Goh CC; Ng LG; Liu B
    ACS Nano; 2019 Mar; 13(3):3095-3105. PubMed ID: 30763072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models.
    Dai J; Li Y; Long Z; Jiang R; Zhuang Z; Wang Z; Zhao Z; Lou X; Xia F; Tang BZ
    ACS Nano; 2020 Jan; 14(1):854-866. PubMed ID: 31820925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AIE nanodots scaffolded by mini-ferritin protein for cellular imaging and photodynamic therapy.
    Min X; Fang T; Li L; Li C; Zhang ZP; Zhang XE; Li F
    Nanoscale; 2020 Jan; 12(4):2340-2344. PubMed ID: 31934693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy.
    Wang XH; Yu YX; Cheng K; Yang W; Liu YA; Peng HS
    Mikrochim Acta; 2019 Nov; 186(12):842. PubMed ID: 31768653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies.
    Zhai Y; Busscher HJ; Liu Y; Zhang Z; van Kooten TG; Su L; Zhang Y; Liu J; Liu J; An Y; Shi L
    Biomacromolecules; 2018 Jun; 19(6):2023-2033. PubMed ID: 29584416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy.
    Yang Z; Zhang Z; Sun Y; Lei Z; Wang D; Ma H; Tang BZ
    Biomaterials; 2021 Aug; 275():120934. PubMed ID: 34217019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy.
    Li Y; Zhang D; Yu Y; Zhang L; Li L; Shi L; Feng G; Tang BZ
    ACS Nano; 2023 Sep; 17(17):16993-17003. PubMed ID: 37606032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy.
    Kitzig S; Thilemann M; Cordes T; Rück-Braun K
    Chemphyschem; 2016 May; 17(9):1252-63. PubMed ID: 26789782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance.
    Zhang L; Li Y; Che W; Zhu D; Li G; Xie Z; Song N; Liu S; Tang BZ; Liu X; Su Z; Bryce MR
    Adv Sci (Weinh); 2019 Mar; 6(5):1802050. PubMed ID: 30886811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy.
    Ma H; Zhao C; Meng H; Li R; Mao L; Hu D; Tian M; Yuan J; Wei Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):7987-7996. PubMed ID: 33560829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thylakoid Membranes with Unique Photosystems Used to Simultaneously Produce Self-Supplying Oxygen and Singlet Oxygen for Hypoxic Tumor Therapy.
    Cheng Y; Zheng R; Wu X; Xu K; Song P; Wang Y; Yan J; Chen R; Li X; Zhang H
    Adv Healthc Mater; 2021 Mar; 10(6):e2001666. PubMed ID: 33448152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precise visualization and ROS-dependent photodynamic therapy of colorectal cancer with a novel mitochondrial viscosity photosensitive fluorescent probe.
    Xiao R; Zheng F; Kang K; Xiao L; Bi A; Chen Y; Zhou Q; Feng X; Chen Z; Yin H; Wang W; Chen Z; Cheng X; Zeng W
    Biomater Res; 2023 Nov; 27(1):112. PubMed ID: 37941059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial photodynamic activity and cytocompatibility of Au
    Miyata S; Miyaji H; Kawasaki H; Yamamoto M; Nishida E; Takita H; Akasaka T; Ushijima N; Iwanaga T; Sugaya T
    Int J Nanomedicine; 2017; 12():2703-2716. PubMed ID: 28435253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tricyano-Methylene-Pyridine Based High-Performance Aggregation-Induced Emission Photosensitizer for Imaging and Photodynamic Therapy.
    Wu X; Zhu Z; Liu Z; Li X; Zhou T; Zhao X; Wang Y; Shi Y; Yu Q; Zhu WH; Wang Q
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy.
    Wu W; Mao D; Hu F; Xu S; Chen C; Zhang CJ; Cheng X; Yuan Y; Ding D; Kong D; Liu B
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma.
    Sebak AA; Gomaa IEO; ElMeshad AN; AbdelKader MH
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():181-189. PubMed ID: 29885810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrion-Anchored Photosensitizer with Near Infrared-I Aggregation-Induced Emission for Near Infrared-II Two-Photon Photodynamic Therapy.
    He Z; Gao Y; Zhang H; Xue Y; Meng F; Luo L
    Adv Healthc Mater; 2021 Dec; 10(24):e2101056. PubMed ID: 34569175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.
    Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T
    Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles.
    Li Y; Wu Q; Kang M; Song N; Wang D; Tang BZ
    Biomaterials; 2020 Feb; 232():119749. PubMed ID: 31918230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygen-Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors.
    Dutta D; Wang J; Li X; Zhou Q; Ge Z
    Small; 2022 Sep; 18(37):e2202369. PubMed ID: 35971160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.