BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36979556)

  • 1. Enzyme-Regulated In Situ Formation of Copper Hexacyanoferrate Nanoparticles with Oxidase-Mimetic Behaviour for Colorimetric Detection of Ascorbate Oxidase.
    Zhang H; Yang DN; Li Y; Yang FQ
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-controllable just-in-time production system of copper hexacyanoferrate nanoparticles with oxidase-mimicking activity for highly sensitive colorimetric immunoassay.
    Lai W; Guo J; Wang Y; Lin Y; Ye S; Zhuang J; Tang D
    Talanta; 2022 Sep; 247():123546. PubMed ID: 35594834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate Oxidase Mimetic Activity of Copper(II) Oxide Nanoparticles.
    He SB; Hu AL; Zhuang QQ; Peng HP; Deng HH; Chen W; Hong GL
    Chembiochem; 2020 Apr; 21(7):978-984. PubMed ID: 31657085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate oxidase enabling glucometer readout for portable detection of hydrogen peroxide.
    Tian T; Zhang H; Yang FQ
    Enzyme Microb Technol; 2022 Oct; 160():110096. PubMed ID: 35839591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing.
    Liu C; Cai Y; Wang J; Liu X; Ren H; Yan L; Zhang Y; Yang S; Guo J; Liu A
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42521-42530. PubMed ID: 32844641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B
    Lai W; Zeng Q; Tang J; Zhang M; Tang D
    Mikrochim Acta; 2018 Jan; 185(2):92. PubMed ID: 29594447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity.
    Yao C; Zhang G; Guan Y; Yang T; Hu R; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121564. PubMed ID: 35797885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn
    Peng D; Que M; Deng X; He Q; Zhao Y; Liao S; Li X; Qiu H
    Mikrochim Acta; 2023 May; 190(6):243. PubMed ID: 37247129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous ZIF-8 Microparticles as Acetylcholinesterase and Alkaline Phosphatase Mimics for the Selective and Sensitive Detection of Ascorbic Acid Oxidase and Copper Ions.
    Chen GY; Yin SJ; Chen L; Zhou X; Yang FQ
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence "off-on-off" sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring.
    Wang M; Wang M; Wang G; Su X
    Analyst; 2020 Feb; 145(3):1001-1007. PubMed ID: 31830153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidase-like Fe-N/C single atom nanozyme enables sensitive detection of ascorbic acid and acid phosphatase.
    Yang D; Chen J; Huang Y; Chen G; Liu X; Wang X; Yang L; Li Z; Hu J; Zhou Q; Ge J; Yang Y
    Anal Chim Acta; 2023 Jul; 1265():341221. PubMed ID: 37230561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid in-situ growth of enzyme-mimicking Pd nanoparticles on TEMPO-oxidized nanocellulose for the efficient detection of ascorbic acid.
    Dadigala R; Bandi R; Han SY; Kwon GJ; Lee SH
    Int J Biol Macromol; 2023 Apr; 234():123657. PubMed ID: 36796553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid.
    Zhuo S; Fang J; Li M; Wang J; Zhu C; Du J
    Mikrochim Acta; 2019 Nov; 186(12):745. PubMed ID: 31691124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-dimensional iron-doped carbon-based nanoenzyme with catalase-like activity for the detection of alkaline phosphatase and ascorbate oxidase.
    Han Z; Fu Q; Lv Y; Wang N; Su X
    Talanta; 2024 May; 272():125704. PubMed ID: 38359716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive acid phosphatase assay based on light-activated specific oxidase mimic activity.
    Qiao X; Li H; Ma H; Zhang H; Jin L
    Talanta; 2023 Apr; 255():124236. PubMed ID: 36587430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO
    Wang J; Ni P; Chen C; Jiang Y; Zhang C; Wang B; Cao B; Lu Y
    Mikrochim Acta; 2020 Jan; 187(2):115. PubMed ID: 31919598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation of fluorescence species for the detection of alkaline phosphatase and organophosphorus pesticide via the ascorbate oxidase mimetic activity of AgPd bimetallic nanoflowers.
    Luo L; Liu J; Liu Y; Chen H; Zhang Y; Liu M; Yao S
    Food Chem; 2024 Jan; 430():137062. PubMed ID: 37542966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets.
    Zhang L; Zhang Q; Liu Q; Wu X; Dong Y; Wang GL
    Talanta; 2021 Jun; 228():122268. PubMed ID: 33773716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zirconium-porphyrin-MOF-based oxidase-like nanozyme with oxygen vacancy for aflatoxin B1 colorimetric sensing.
    Zhang S; Li H; Xia Q; Yang D; Yang Y
    J Food Sci; 2024 Jun; 89(6):3618-3628. PubMed ID: 38685872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-controlled dissolution of MnO
    Lai W; Wei Q; Xu M; Zhuang J; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):645-651. PubMed ID: 26725933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.