These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36979764)

  • 1. Development of Cellular Signaling Pathways by Bioceramic Heat Treatment (Sintering) in Osteoblast Cells.
    Jung Y; Kim J; Kim S; Chung SH; Wie J
    Biomedicines; 2023 Mar; 11(3):. PubMed ID: 36979764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between bioceramics sintering and micro-particles-induced cellular damages.
    Lu J; Blary MC; Vavasseur S; Descamps M; Anselme K; Hardouin P
    J Mater Sci Mater Med; 2004 Apr; 15(4):361-5. PubMed ID: 15332600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast-like cell proliferation on tape-cast and sintered tricalcium phosphate sheets.
    Tanimoto Y; Shibata Y; Kataoka Y; Miyazaki T; Nishiyama N
    Acta Biomater; 2008 Mar; 4(2):397-402. PubMed ID: 18054299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of processing parameters on microstructure and biocompatibility of surface laser sintered hydroxyapatite-SiO2 composites.
    Kivitz E; Görke R; Schilling AF; Zhang J; Heinrich JG
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):568-75. PubMed ID: 23255362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.
    Ergun C; Liu H; Webster TJ
    J Biomed Mater Res A; 2009 Jun; 89(3):727-33. PubMed ID: 18464257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering.
    Biesuz M; Galotta A; Motta A; Kermani M; Grasso S; Vontorová J; Tyrpekl V; Vilémová M; Sglavo VM
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112246. PubMed ID: 34225885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic calcium phosphate bioceramics: preparation, properties and applications.
    LeGeros RZ; Lin S; Rohanizadeh R; Mijares D; LeGeros JP
    J Mater Sci Mater Med; 2003 Mar; 14(3):201-9. PubMed ID: 15348465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Micro-particles of bioceramics could cause cell and tissue damage].
    Lu J; Tang T; Ding H; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):85-9. PubMed ID: 16532817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of calcium phosphate particles on the growth of osteoblasts.
    Sun JS; Tsuang YH; Liao CJ; Liu HC; Hang YS; Lin FH
    J Biomed Mater Res; 1997 Dec; 37(3):324-34. PubMed ID: 9368137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular response of calcium phosphate bone substitute containing hydroxyapatite and tricalcium phosphate.
    Wu CL; Ou SF; Huang TS; Yang TS; Wang MS; Ou KL
    Implant Dent; 2014 Feb; 23(1):74-8. PubMed ID: 24445919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
    Nilen RW; Richter PW
    J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering.
    Deng B; Bruzzaniti A; Cheng GJ
    Int J Nanomedicine; 2018; 13():8217-8230. PubMed ID: 30555235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of calcium phosphate based functional gradient bioceramics.
    Kon M; Ishikawa K; Miyamoto Y; Asaoka K
    Biomaterials; 1995 Jun; 16(9):709-14. PubMed ID: 7578775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.
    Cüneyt Taş A; Korkusuz F; Timuçin M; Akkaş N
    J Mater Sci Mater Med; 1997 Feb; 8(2):91-6. PubMed ID: 15348776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F
    J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sintering of biphasic calcium phosphates.
    Brown O; McAfee M; Clarke S; Buchanan F
    J Mater Sci Mater Med; 2010 Aug; 21(8):2271-9. PubMed ID: 20232235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.
    Frasnelli M; Sglavo VM
    Acta Biomater; 2016 Mar; 33():283-9. PubMed ID: 26796207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.
    Li X; Guo B; Xiao Y; Yuan T; Fan Y; Zhang X
    J Mater Sci Mater Med; 2016 Jan; 27(1):5. PubMed ID: 26610928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.