These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 36980187)
1. Heterogeneity of Cholangiocarcinoma Immune Biology. Vita F; Olaizola I; Amato F; Rae C; Marco S; Banales JM; Braconi C Cells; 2023 Mar; 12(6):. PubMed ID: 36980187 [TBL] [Abstract][Full Text] [Related]
2. Cholangiocarcinoma: what are the most valuable therapeutic targets - cancer-associated fibroblasts, immune cells, or beyond T cells? Wang J; Loeuillard E; Gores GJ; Ilyas SI Expert Opin Ther Targets; 2021 Oct; 25(10):835-845. PubMed ID: 34806500 [TBL] [Abstract][Full Text] [Related]
3. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. Raggi C; Invernizzi P; Andersen JB J Hepatol; 2015 Jan; 62(1):198-207. PubMed ID: 25220250 [TBL] [Abstract][Full Text] [Related]
4. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Wang J; Ilyas S Expert Opin Investig Drugs; 2021 Apr; 30(4):429-438. PubMed ID: 33322977 [No Abstract] [Full Text] [Related]
5. Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma progression and therapeutic resistance. Ravichandra A; Bhattacharjee S; Affò S Adv Cancer Res; 2022; 156():201-226. PubMed ID: 35961700 [TBL] [Abstract][Full Text] [Related]
6. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Yang S; Zou R; Dai Y; Hu Y; Li F; Hu H Int J Oncol; 2023 Dec; 63(6):. PubMed ID: 37888583 [TBL] [Abstract][Full Text] [Related]
7. Tumor Microenvironment and its Implications for Antitumor Immunity in Cholangiocarcinoma: Future Perspectives for Novel Therapies. Cao H; Huang T; Dai M; Kong X; Liu H; Zheng Z; Sun G; Sun G; Rong D; Jin Z; Tang W; Xia Y Int J Biol Sci; 2022; 18(14):5369-5390. PubMed ID: 36147461 [TBL] [Abstract][Full Text] [Related]
8. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Vicent S; Lieshout R; Saborowski A; Verstegen MMA; Raggi C; Recalcati S; Invernizzi P; van der Laan LJW; Alvaro D; Calvisi DF; Cardinale V Liver Int; 2019 May; 39 Suppl 1():79-97. PubMed ID: 30851232 [TBL] [Abstract][Full Text] [Related]
9. The Tumor Immune Microenvironment plays a Key Role in Driving the Progression of Cholangiocarcinoma. Zhang Y; Yan HJ; Wu J Curr Cancer Drug Targets; 2024; 24(7):681-700. PubMed ID: 38213139 [TBL] [Abstract][Full Text] [Related]
10. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Farazi PA; Zeisberg M; Glickman J; Zhang Y; Kalluri R; DePinho RA Cancer Res; 2006 Jul; 66(13):6622-7. PubMed ID: 16818635 [TBL] [Abstract][Full Text] [Related]
11. The role of tumour microenvironment: a new vision for cholangiocarcinoma. Chen Z; Guo P; Xie X; Yu H; Wang Y; Chen G J Cell Mol Med; 2019 Jan; 23(1):59-69. PubMed ID: 30394682 [TBL] [Abstract][Full Text] [Related]
12. SERPINE1: Role in Cholangiocarcinoma Progression and a Therapeutic Target in the Desmoplastic Microenvironment. Czekay RP; Higgins CE; Aydin HB; Samarakoon R; Subasi NB; Higgins SP; Lee H; Higgins PJ Cells; 2024 May; 13(10):. PubMed ID: 38786020 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Cantallops Vilà P; Ravichandra A; Agirre Lizaso A; Perugorria MJ; Affò S Hepatology; 2024 Apr; 79(4):941-958. PubMed ID: 37018128 [TBL] [Abstract][Full Text] [Related]
14. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Thongchot S; Ferraresi A; Vidoni C; Loilome W; Yongvanit P; Namwat N; Isidoro C Cancer Lett; 2018 Aug; 430():160-171. PubMed ID: 29802929 [TBL] [Abstract][Full Text] [Related]
15. Any Role for Microbiota in Cholangiocarcinoma? A Comprehensive Review. Elvevi A; Laffusa A; Gallo C; Invernizzi P; Massironi S Cells; 2023 Jan; 12(3):. PubMed ID: 36766711 [TBL] [Abstract][Full Text] [Related]
16. The expression of matrix metalloproteinases in intrahepatic cholangiocarcinoma, hilar (Klatskin tumor), middle and distal extrahepatic cholangiocarcinoma, gallbladder cancer, and ampullary carcinoma: role of matrix metalloproteinases in tumor progression and prognosis. Kirimlioğlu H; Türkmen I; Başsüllü N; Dirican A; Karadağ N; Kirimlioğlu V Turk J Gastroenterol; 2009 Mar; 20(1):41-7. PubMed ID: 19330734 [TBL] [Abstract][Full Text] [Related]
17. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target. Alvisi G; Termanini A; Soldani C; Portale F; Carriero R; Pilipow K; Costa G; Polidoro M; Franceschini B; Malenica I; Puccio S; Lise V; Galletti G; Zanon V; Colombo FS; De Simone G; Tufano M; Aghemo A; Di Tommaso L; Peano C; Cibella J; Iannacone M; Roychoudhuri R; Manzo T; Donadon M; Torzilli G; Kunderfranco P; Di Mitri D; Lugli E; Lleo A J Hepatol; 2022 Nov; 77(5):1359-1372. PubMed ID: 35738508 [TBL] [Abstract][Full Text] [Related]
18. The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine. Rimassa L; Personeni N; Aghemo A; Lleo A J Autoimmun; 2019 Jun; 100():17-26. PubMed ID: 30862450 [TBL] [Abstract][Full Text] [Related]
19. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium. Gentilini A; Pastore M; Marra F; Raggi C Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249019 [TBL] [Abstract][Full Text] [Related]
20. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Wu HJ; Chu PY Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]