BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 36980193)

  • 21. Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury.
    Xie C; Shen X; Xu X; Liu H; Li F; Lu S; Gao Z; Zhang J; Wu Q; Yang D; Bao X; Zhang F; Wu S; Lv Z; Zhu M; Xu D; Wang P; Cao L; Wang W; Yuan Z; Wang Y; Li Z; Teng H; Huang Z
    J Neurosci; 2020 Mar; 40(13):2644-2662. PubMed ID: 32066583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord.
    Hsu JY; Bourguignon LY; Adams CM; Peyrollier K; Zhang H; Fandel T; Cun CL; Werb Z; Noble-Haeusslein LJ
    J Neurosci; 2008 Dec; 28(50):13467-77. PubMed ID: 19074020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by transplanted fetal spinal cord tissue.
    Houle J
    J Neurosci Res; 1992 Jan; 31(1):120-30. PubMed ID: 1613818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Recent advances in treatment of glial scar-induced inhibition of nerve regeneration].
    Zhang JX; Hu WW; Liu Z
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2009 Nov; 38(6):639-43. PubMed ID: 20014492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.
    Khaing ZZ; Milman BD; Vanscoy JE; Seidlits SK; Grill RJ; Schmidt CE
    J Neural Eng; 2011 Aug; 8(4):046033. PubMed ID: 21753237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice.
    Huang LJ; Li G; Ding Y; Sun JH; Wu TT; Zhao W; Zeng YS
    Exp Neurol; 2019 Oct; 320():112965. PubMed ID: 31132364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    BMC Neurol; 2009 Jul; 9():32. PubMed ID: 19604403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury.
    Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH
    J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury.
    Rodriguez JP; Coulter M; Miotke J; Meyer RL; Takemaru K; Levine JM
    J Neurosci; 2014 Jul; 34(31):10285-97. PubMed ID: 25080590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.
    Takeda A; Okada S; Funakoshi K
    Brain Res; 2017 Oct; 1673():23-29. PubMed ID: 28801063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury.
    Gong L; Gu Y; Han X; Luan C; Liu C; Wang X; Sun Y; Zheng M; Fang M; Yang S; Xu L; Sun H; Yu B; Gu X; Zhou S
    Neurosci Bull; 2023 Feb; 39(2):213-244. PubMed ID: 35788904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses.
    Orr MB; Gensel JC
    Neurotherapeutics; 2018 Jul; 15(3):541-553. PubMed ID: 29717413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content.
    Baumann HJ; Mahajan G; Ham TR; Betonio P; Kothapalli CR; Shriver LP; Leipzig ND
    J Mech Behav Biomed Mater; 2020 Oct; 110():103953. PubMed ID: 32957245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.