These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36980394)

  • 21. Automatic location scheme of anatomical landmarks in 3D head MRI based on the scale attention hourglass network.
    Li S; Gong Q; Li H; Chen S; Liu Y; Ruan G; Zhu L; Liu L; Chen H
    Comput Methods Programs Biomed; 2022 Feb; 214():106564. PubMed ID: 34894558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Landmark-based homologous multi-point warping approach to 3D facial recognition using multiple datasets.
    Agbolade O; Nazri A; Yaakob R; Ghani AAA; Cheah YK
    PeerJ Comput Sci; 2020; 6():e249. PubMed ID: 33816901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of an automated method of 3D soft tissue landmark detection.
    Baksi S; Freezer S; Matsumoto T; Dreyer C
    Eur J Orthod; 2021 Dec; 43(6):622-630. PubMed ID: 33377968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved detection of landmarks on 3D human face data.
    Liang S; Wu J; Weinberg SM; Shapiro LG
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6482-5. PubMed ID: 24111226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deformation modeling for robust 3D face matching.
    Lu X; Jain A
    IEEE Trans Pattern Anal Mach Intell; 2008 Aug; 30(8):1346-57. PubMed ID: 18566490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic Detection of Fiducial Landmarks Toward the Development of an Application for Digitizing the Locations of EEG Electrodes: Occipital Structure Sensor-Based Work.
    Gallego Martínez EE; González Mitjans A; Garea-Llano E; Bringas-Vega ML; Valdes-Sosa PA
    Front Neurosci; 2021; 15():526257. PubMed ID: 33994912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implementing a superimposition and measurement model for 3D sagittal analysis of therapy-induced changes in facial soft tissue: a pilot study.
    Hoefert CS; Bacher M; Herberts T; Krimmel M; Reinert S; Hoefert S; Göz G
    J Orofac Orthop; 2010 May; 71(3):221-34. PubMed ID: 20503004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation.
    Claes P; Vandermeulen D; De Greef S; Willems G; Suetens P
    Forensic Sci Int; 2006 May; 159 Suppl 1():S147-58. PubMed ID: 16540276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters.
    Ehrhardt J; Handels H; Plötz W; Pöppl SJ
    Methods Inf Med; 2004; 43(4):391-7. PubMed ID: 15472752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ensemble landmarking of 3D facial surface scans.
    de Jong MA; Hysi P; Spector T; Niessen W; Koudstaal MJ; Wolvius EB; Kayser M; Böhringer S
    Sci Rep; 2018 Jan; 8(1):12. PubMed ID: 29311563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformable registration of 3D ultrasound volumes using automatic landmark generation.
    Figl M; Hoffmann R; Kaar M; Hummel J
    PLoS One; 2019; 14(3):e0213004. PubMed ID: 30875379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of the Relationship Between Facial and Dental Midlines with Anatomical Landmarks of the Face and Oral Cavity.
    Farahani A; Jafari K; Hemmati A; Naghizadeh A; Nemati R; Farahani MH
    Turk J Orthod; 2019 Dec; 32(4):200-206. PubMed ID: 32110464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets.
    de Jong MA; Wollstein A; Ruff C; Dunaway D; Hysi P; Spector T; Fan Liu ; Niessen W; Koudstaal MJ; Kayser M; Wolvius EB; Bohringer S
    IEEE Trans Image Process; 2016 Feb; 25(2):580-8. PubMed ID: 26540684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lung registration using automatically detected landmarks.
    Polzin T; Rühaak J; Werner R; Handels H; Modersitzki J
    Methods Inf Med; 2014; 53(4):250-6. PubMed ID: 24992929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of automated landmark identification on morphometric analyses.
    Percival CJ; Devine J; Darwin BC; Liu W; van Eede M; Henkelman RM; Hallgrimsson B
    J Anat; 2019 Jun; 234(6):917-935. PubMed ID: 30901082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward an Automatic System for Computer-Aided Assessment in Facial Palsy.
    Guarin DL; Yunusova Y; Taati B; Dusseldorp JR; Mohan S; Tavares J; van Veen MM; Fortier E; Hadlock TA; Jowett N
    Facial Plast Surg Aesthet Med; 2020; 22(1):42-49. PubMed ID: 32053425
    [No Abstract]   [Full Text] [Related]  

  • 37. Automatic landmark detection and mapping for 2D/3D registration with BoneNet.
    Nguyen V; Alves Pereira LF; Liang Z; Mielke F; Van Houtte J; Sijbers J; De Beenhouwer J
    Front Vet Sci; 2022; 9():923449. PubMed ID: 36061115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization.
    Wang J; Liu Y; Noble JH; Dawant BM
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10133():. PubMed ID: 28781410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Facial Landmark Localization for cephalometric analysis.
    Torres HR; Morais P; Fritze A; Oliveira B; Veloso F; Rudiger M; Fonseca JC; Vilaca JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1016-1019. PubMed ID: 36083940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MeshMonk: Open-source large-scale intensive 3D phenotyping.
    White JD; Ortega-Castrillón A; Matthews H; Zaidi AA; Ekrami O; Snyders J; Fan Y; Penington T; Van Dongen S; Shriver MD; Claes P
    Sci Rep; 2019 Apr; 9(1):6085. PubMed ID: 30988365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.