BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36980521)

  • 1. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon.
    Pons G; Gallo-Oller G; Navarro N; Zarzosa P; Sansa-Girona J; García-Gilabert L; Magdaleno A; Segura MF; Sánchez de Toledo J; Gallego S; Moreno L; Roma J
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival.
    Gillani R; Seong BKA; Crowdis J; Conway JR; Dharia NV; Alimohamed S; Haas BJ; Han K; Park J; Dietlein F; He MX; Imamovic A; Ma C; Bassik MC; Boehm JS; Vazquez F; Gusev A; Liu D; Janeway KA; McFarland JM; Stegmaier K; Van Allen EM
    Cancer Res; 2021 Aug; 81(15):3971-3984. PubMed ID: 34099491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Cancer Cell Line Dependencies From the Protein Expression Data of Reverse-Phase Protein Arrays.
    Chen MM; Li J; Mills GB; Liang H
    JCO Clin Cancer Inform; 2020 Apr; 4():357-366. PubMed ID: 32330068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Behan FM; Iorio F; Picco G; Gonçalves E; Beaver CM; Migliardi G; Santos R; Rao Y; Sassi F; Pinnelli M; Ansari R; Harper S; Jackson DA; McRae R; Pooley R; Wilkinson P; van der Meer D; Dow D; Buser-Doepner C; Bertotti A; Trusolino L; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    Nature; 2019 Apr; 568(7753):511-516. PubMed ID: 30971826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping.
    Naert T; Tulkens D; Van Nieuwenhuysen T; Przybyl J; Demuynck S; van de Rijn M; Al-Jazrawe M; Alman BA; Coucke PJ; De Leeneer K; Vanhove C; Savvides SN; Creytens D; Vleminckx K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34789568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Pan-Cancer Characterization of Nuclear Receptors Identifies Potential Cancer Biomarkers and Therapeutic Targets.
    Jiang J; Yuan J; Hu Z; Xu M; Zhang Y; Long M; Fan Y; Montone KT; Tanyi JL; Tavana O; Chan HM; Zhang L; Hu X
    Cancer Res; 2022 Jan; 82(1):46-59. PubMed ID: 34750098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer.
    Xu C; Nikolova O; Basom RS; Mitchell RM; Shaw R; Moser RD; Park H; Gurley KE; Kao MC; Green CL; Schaub FX; Diaz RL; Swan HA; Jang IS; Guinney J; Gadi VK; Margolin AA; Grandori C; Kemp CJ; Méndez E
    Clin Cancer Res; 2018 Jun; 24(12):2828-2843. PubMed ID: 29599409
    [No Abstract]   [Full Text] [Related]  

  • 11. Passenger Gene Coamplifications Create Collateral Therapeutic Vulnerabilities in Cancer.
    Bei Y; Bramé L; Kirchner M; Fritsche-Guenther R; Kunz S; Bhattacharya A; Rusu MC; Gürgen D; Dubios FPB; Köppke JKC; Proba J; Wittstruck N; Sidorova OA; Chamorro González R; Dorado Garcia H; Brückner L; Xu R; Giurgiu M; Rodriguez-Fos E; Yu Q; Spanjaard B; Koche RP; Schmitt CA; Schulte JH; Eggert A; Haase K; Kirwan J; Hagemann AIH; Mertins P; Dörr JR; Henssen AG
    Cancer Discov; 2024 Mar; 14(3):492-507. PubMed ID: 38197697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer.
    Wang T; Gautam P; Rousu J; Aittokallio T
    Comput Struct Biotechnol J; 2020; 18():3819-3832. PubMed ID: 33335681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining a Cancer Dependency Map.
    Tsherniak A; Vazquez F; Montgomery PG; Weir BA; Kryukov G; Cowley GS; Gill S; Harrington WF; Pantel S; Krill-Burger JM; Meyers RM; Ali L; Goodale A; Lee Y; Jiang G; Hsiao J; Gerath WFJ; Howell S; Merkel E; Ghandi M; Garraway LA; Root DE; Golub TR; Boehm JS; Hahn WC
    Cell; 2017 Jul; 170(3):564-576.e16. PubMed ID: 28753430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomic analysis of adult and pediatric brain tumor isolates.
    Hoellerbauer P; Biery MC; Arora S; Rao Y; Girard EJ; Mitchell K; Dighe P; Kufeld M; Kuppers DA; Herman JA; Holland EC; Soroceanu L; Vitanza NA; Olson JM; Pritchard JR; Paddison PJ
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets.
    Dempster JM; Pacini C; Pantel S; Behan FM; Green T; Krill-Burger J; Beaver CM; Younger ST; Zhivich V; Najgebauer H; Allen F; Gonçalves E; Shepherd R; Doench JG; Yusa K; Vazquez F; Parts L; Boehm JS; Golub TR; Hahn WC; Root DE; Garnett MJ; Tsherniak A; Iorio F
    Nat Commun; 2019 Dec; 10(1):5817. PubMed ID: 31862961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.
    Meyers RM; Bryan JG; McFarland JM; Weir BA; Sizemore AE; Xu H; Dharia NV; Montgomery PG; Cowley GS; Pantel S; Goodale A; Lee Y; Ali LD; Jiang G; Lubonja R; Harrington WF; Strickland M; Wu T; Hawes DC; Zhivich VA; Wyatt MR; Kalani Z; Chang JJ; Okamoto M; Stegmaier K; Golub TR; Boehm JS; Vazquez F; Root DE; Hahn WC; Tsherniak A
    Nat Genet; 2017 Dec; 49(12):1779-1784. PubMed ID: 29083409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landscape of somatic allelic imbalances and copy number alterations in HER2-amplified breast cancer.
    Staaf J; Jönsson G; Ringnér M; Baldetorp B; Borg A
    Breast Cancer Res; 2011; 13(6):R129. PubMed ID: 22169037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SuperDendrix algorithm integrates genetic dependencies and genomic alterations across pathways and cancer types.
    Park TY; Leiserson MDM; Klau GW; Raphael BJ
    Cell Genom; 2022 Feb; 2(2):. PubMed ID: 35382456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects.
    Gonçalves E; Behan FM; Louzada S; Arnol D; Stronach EA; Yang F; Yusa K; Stegle O; Iorio F; Garnett MJ
    Genome Biol; 2019 Feb; 20(1):27. PubMed ID: 30722791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Models for Chromosome 20q11.21 Amplification and Drug Sensitivities in Colorectal Cancer.
    Voutsadakis IA
    Medicina (Kaunas); 2021 Aug; 57(9):. PubMed ID: 34577783
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.