BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 36980560)

  • 1. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic nanoparticle hyperthermia: Predictive model for temperature distribution.
    Stigliano RV; Shubitidze F; Petryk AA; Tate JA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8584():858410. PubMed ID: 25301993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia.
    Nieskoski MD; Trembly BS
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1642-50. PubMed ID: 24691525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents.
    Balousis A; Maniotis N; Samaras T
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.
    Shubitidze F; Kekalo K; Stigliano R; Baker I
    J Appl Phys; 2015 Mar; 117(9):094302. PubMed ID: 25825545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia.
    Attaluri A; Jackowski J; Sharma A; Kandala SK; Nemkov V; Yakey C; DeWeese TL; Kumar A; Goldstein RC; Ivkov R
    Int J Hyperthermia; 2020; 37(1):1-14. PubMed ID: 31918595
    [No Abstract]   [Full Text] [Related]  

  • 9. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focused RF hyperthermia using magnetic fluids.
    Tasci TO; Vargel I; Arat A; Guzel E; Korkusuz P; Atalar E
    Med Phys; 2009 May; 36(5):1906-12. PubMed ID: 19544810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.
    Petryk AA; Stigliano RV; Giustini AJ; Gottesman RE; Trembly BS; Kaufman PA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24386533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment.
    Hoopes P; Strawbridge R; Gibson U; Zeng Q; Pierce Z; Savellano M; Tate J; Ogden J; Baker I; Ivkov R; Foreman A
    Proc SPIE Int Soc Opt Eng; 2007 Feb; 6440():64400K. PubMed ID: 25301985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors.
    Giustini AJ; Petryk AA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24392200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical temperature distributions for solenoidal-type hyperthermia systems.
    Strohbehn JW
    Med Phys; 1982; 9(5):673-82. PubMed ID: 7155068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy.
    Zhao S; Hao N; Zhang JXJ; Hoopes PJ; Shubitidze F; Chen Z
    J Nanobiotechnology; 2021 Mar; 19(1):63. PubMed ID: 33648501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.
    Tsiapla AR; Kalimeri AA; Maniotis N; Myrovali E; Samaras T; Angelakeris M; Kalogirou O
    Int J Hyperthermia; 2021; 38(1):511-522. PubMed ID: 33784924
    [No Abstract]   [Full Text] [Related]  

  • 19. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.
    Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D
    Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential.
    Ludwig R; Stapf M; Dutz S; Müller R; Teichgräber U; Hilger I
    Nanoscale Res Lett; 2014; 9(1):602. PubMed ID: 25404872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.