These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 36981117)
1. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Keramat M; Ehsandoost E; Golmakani MT Foods; 2023 Mar; 12(6):. PubMed ID: 36981117 [TBL] [Abstract][Full Text] [Related]
2. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Cai Z; Wei Y; Shi A; Zhong J; Rao P; Wang Q; Zhang H Adv Colloid Interface Sci; 2023 Mar; 313():102863. PubMed ID: 36868168 [TBL] [Abstract][Full Text] [Related]
3. Pickering particles as interfacial reservoirs of antioxidants. Schröder A; Laguerre M; Sprakel J; Schroën K; Berton-Carabin CC J Colloid Interface Sci; 2020 Sep; 575():489-498. PubMed ID: 32434100 [TBL] [Abstract][Full Text] [Related]
5. Unexpected Antioxidant Efficiency of Chlorogenic Acid Phenolipids in Fish Oil-in-Water Nanoemulsions: An Example of How Relatively Low Interfacial Concentrations Can Make Antioxidants to Be Inefficient. Costa M; Losada-Barreiro S; Vicente A; Bravo-Díaz C; Paiva-Martins F Molecules; 2022 Jan; 27(3):. PubMed ID: 35164119 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Wang X; Chen Y; McClements DJ; Meng C; Zhang M; Chen H; Deng Q Adv Colloid Interface Sci; 2024 Mar; 325():103117. PubMed ID: 38394718 [TBL] [Abstract][Full Text] [Related]
7. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions. Pan Y; Nitin N Colloids Surf B Biointerfaces; 2015 Nov; 135():472-480. PubMed ID: 26283496 [TBL] [Abstract][Full Text] [Related]
8. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers. Chen B; Rao J; Ding Y; McClements DJ; Decker EA Food Res Int; 2016 Jul; 85():162-169. PubMed ID: 29544831 [TBL] [Abstract][Full Text] [Related]
9. Targeting Antioxidants to Interfaces: Control of the Oxidative Stability of Lipid-Based Emulsions. Mitrus O; Żuraw M; Losada-Barreiro S; Bravo-Díaz C; Paiva-Martins F J Agric Food Chem; 2019 Mar; 67(11):3266-3274. PubMed ID: 30811186 [TBL] [Abstract][Full Text] [Related]
10. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Wang Z; Ma Y; Chen H; Deng Y; Wei Z; Zhang Y; Tang X; Li P; Zhao Z; Zhou P; Liu G; Zhang M Food Chem; 2022 Sep; 387():132874. PubMed ID: 35427865 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Farooq S; Abdullah ; Zhang H; Weiss J Compr Rev Food Sci Food Saf; 2021 Sep; 20(5):4250-4277. PubMed ID: 34190411 [TBL] [Abstract][Full Text] [Related]
12. Effects of emulsifier hydrophile-lipophile balance and emulsifier concentration on the distributions of gallic acid, propyl gallate, and α-tocopherol in corn oil emulsions. Losada-Barreiro S; Sánchez-Paz V; Bravo-Díaz C J Colloid Interface Sci; 2013 Jan; 389(1):1-9. PubMed ID: 22939258 [TBL] [Abstract][Full Text] [Related]
13. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds. Xu B; Liu C; Sun H; Wang X; Huang F J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944 [TBL] [Abstract][Full Text] [Related]
14. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles? Schröder A; Sprakel J; Boerkamp W; Schroën K; Berton-Carabin CC Food Res Int; 2019 Jun; 120():352-363. PubMed ID: 31000249 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Wang LJ; Hu YQ; Yin SW; Yang XQ; Lai FR; Wang SQ J Agric Food Chem; 2015 Mar; 63(9):2514-24. PubMed ID: 25636210 [TBL] [Abstract][Full Text] [Related]
16. Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Costa M; Freiría-Gándara J; Losada-Barreiro S; Paiva-Martins F; Aliaga C; Bravo-Díaz C J Colloid Interface Sci; 2021 Dec; 604():248-259. PubMed ID: 34271487 [TBL] [Abstract][Full Text] [Related]
17. Effects of Surfactant Volume Fraction on the Antioxidant Efficiency and on The Interfacial Concentrations of Octyl and Tetradecyl Costa M; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C Molecules; 2021 Oct; 26(19):. PubMed ID: 34641602 [TBL] [Abstract][Full Text] [Related]
18. Design principles of oil-in-water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Li M; McClements DJ; Liu X; Liu F Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):3159-3190. PubMed ID: 33337043 [TBL] [Abstract][Full Text] [Related]
20. Pickering emulsions stabilized by luteolin micro-nano particles to improve the oxidative stability of pine nut oil. Wang L; Lu S; Deng Y; Wu W; Wang L; Liu Y; Zu Y; Zhao X J Sci Food Agric; 2021 Mar; 101(4):1314-1322. PubMed ID: 33245580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]