These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36981210)

  • 1. Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis.
    Bai R; Sun J; Qiao X; Zheng Z; Li M; Zhang B
    Foods; 2023 Mar; 12(6):. PubMed ID: 36981210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Different Drying Methods on the Volatile Components of Ginger (
    Yu DX; Guo S; Wang JM; Yan H; Zhang ZY; Yang J; Duan JA
    Foods; 2022 May; 11(11):. PubMed ID: 35681361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standardization of process parameters for microwave assisted convective dehydration of ginger.
    Mohanta B; Dash SK; Panda MK; Sahoo GR
    J Food Sci Technol; 2014 Apr; 51(4):673-81. PubMed ID: 24741160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cutting and drying method (vacuum freezing, catalytic infrared, and hot air drying) on rehydration kinetics and physicochemical characteristics of ginger (Zingiber officinale Roscoe).
    Sun Q; Chen L; Zhou C; Okonkwo CE; Tang Y
    J Food Sci; 2022 Sep; 87(9):3797-3808. PubMed ID: 35904154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum drying conditions for ginger (
    Chen K; Yuan Y; Zhao B; Kaveh M; Beigi M; Zheng Y; Torki M
    Food Chem X; 2023 Dec; 20():100987. PubMed ID: 38144724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS).
    Ge S; Chen Y; Ding S; Zhou H; Jiang L; Yi Y; Deng F; Wang R
    J Sci Food Agric; 2020 May; 100(7):3087-3098. PubMed ID: 32083310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A less energy intensive process for dehydrating onion.
    Grewal MK; Jha SN; Patil RT; Dhatt AS; Kaur A; Jaiswal P
    J Food Sci Technol; 2015 Feb; 52(2):1131-7. PubMed ID: 25694729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality.
    Mugodo K; Workneh TS
    Heliyon; 2021 Jun; 7(6):e07182. PubMed ID: 34189290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetics and variation of volatile components of Atractylodis Macrocephalae Rhizoma during hot-air drying].
    Guo HL; Xu MT; Wu ZF; Feng CH; Chen Y; Luo JN; Zhang WQ; Xiong YK
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):922-930. PubMed ID: 35285191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Pre-Drying Treatment and Drying Conditions on Quality and Energy Consumption of Hot Air-Dried Celeriac Slices: Optimisation.
    Nurkhoeriyati T; Kulig B; Sturm B; Hensel O
    Foods; 2021 Jul; 10(8):. PubMed ID: 34441535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger.
    Shaukat MN; Fallico B; Nazir A
    Foods; 2024 Apr; 13(7):. PubMed ID: 38611400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network.
    Murthy TP; Manohar B
    J Food Sci Technol; 2014 Dec; 51(12):3712-21. PubMed ID: 25477637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (
    An K; Tang D; Wu J; Fu M; Wen J; Xiao G; Xu Y
    Food Sci Nutr; 2019 Aug; 7(8):2537-2545. PubMed ID: 31428341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality and Process Optimization of Infrared Combined Hot Air Drying of Yam Slices Based on BP Neural Network and Gray Wolf Algorithm.
    Zhang J; Zheng X; Xiao H; Shan C; Li Y; Yang T
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drying characteristics of yam slices (
    Ojediran JO; Okonkwo CE; Adeyi AJ; Adeyi O; Olaniran AF; George NE; Olayanju AT
    Heliyon; 2020 Mar; 6(3):e03555. PubMed ID: 32190764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.
    Kumar D; Prasad S; Murthy GS
    J Food Sci Technol; 2014 Feb; 51(2):221-32. PubMed ID: 24493879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality of dry ginger (Zingiber officinale) by different drying methods.
    E J; R V; T JZ
    J Food Sci Technol; 2014 Nov; 51(11):3190-8. PubMed ID: 26396311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS.
    Guo Y; Chen D; Dong Y; Ju H; Wu C; Lin S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():46-55. PubMed ID: 30241073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Different Hot Air Drying Temperatures on Drying Kinetics, Shrinkage, and Colour of Persimmon Slices.
    Senadeera W; Adiletta G; Önal B; Di Matteo M; Russo P
    Foods; 2020 Jan; 9(1):. PubMed ID: 31963701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of pre-drying and deep-fat-frying conditions for production of low-fat fried carrot slices.
    Karacabey E; Turan MS; Özçelik ŞG; Baltacıoğlu C; Küçüköner E
    J Sci Food Agric; 2016 Oct; 96(13):4603-12. PubMed ID: 26916385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.