These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36981289)

  • 1. Detecting Information Relays in Deep Neural Networks.
    Hintze A; Adami C
    Entropy (Basel); 2023 Feb; 25(3):. PubMed ID: 36981289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks.
    Velez R; Clune J
    PLoS One; 2017; 12(11):e0187736. PubMed ID: 29145413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Memories of the Past in the Context of Different Complex Neural Network Architectures.
    Bohm C; Kirkpatrick D; Hintze A
    Neural Comput; 2022 Feb; 34(3):754-780. PubMed ID: 35016223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting.
    Xie Z; He F; Fu S; Sato I; Tao D; Sugiyama M
    Neural Comput; 2021 Jul; 33(8):2163-2192. PubMed ID: 34310675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bow-tie architectures in biological and artificial neural networks: Implications for network evolution and assay design.
    Hilliard S; Mosoyan K; Branciamore S; Gogoshin G; Zhang A; Simons DL; Rockne RC; Lee PP; Rodin AS
    iScience; 2023 Feb; 26(2):106041. PubMed ID: 36818303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information Fragmentation, Encryption and Information Flow in Complex Biological Networks.
    Bohm C; Kirkpatrick D; Cao V; Adami C
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal modularity and memory capacity of neural reservoirs.
    Rodriguez N; Izquierdo E; Ahn YY
    Netw Neurosci; 2019; 3(2):551-566. PubMed ID: 31089484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modularity and anti-modularity in networks with arbitrary degree distribution.
    Hintze A; Adami C
    Biol Direct; 2010 May; 5():32. PubMed ID: 20459629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining a modular signalling network from the fly interactome.
    Baudot A; Angelelli JB; Guénoche A; Jacq B; Brun C
    BMC Syst Biol; 2008 May; 2():45. PubMed ID: 18489752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A node-based informed modularity strategy to identify organizational modules in anatomical networks.
    Esteve-Altava B
    Biol Open; 2020 Oct; 9(10):. PubMed ID: 33077552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural networks improve the accuracy of cancer survival prediction.
    Burke HB; Goodman PH; Rosen DB; Henson DE; Weinstein JN; Harrell FE; Marks JR; Winchester DP; Bostwick DG
    Cancer; 1997 Feb; 79(4):857-62. PubMed ID: 9024725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining modular organization of protein interaction networks by maximizing modularity density.
    Zhang S; Ning XM; Ding C; Zhang XS
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S10. PubMed ID: 20840724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BEAN: Interpretable and Efficient Learning With Biologically-Enhanced Artificial Neuronal Assembly Regularization.
    Gao Y; Ascoli GA; Zhao L
    Front Neurorobot; 2021; 15():567482. PubMed ID: 34140886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic relays and cortical functioning.
    Sherman SM
    Prog Brain Res; 2005; 149():107-26. PubMed ID: 16226580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: a preliminary study.
    Bas B; Ozgonenel O; Ozden B; Bekcioglu B; Bulut E; Kurt M
    J Oral Maxillofac Surg; 2012 Jan; 70(1):51-9. PubMed ID: 21802818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.
    Barrès V; Simons A; Arbib M
    Neural Netw; 2013 Jan; 37():66-92. PubMed ID: 23177656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.