These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36981321)

  • 21. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary.
    Yang LM; Shu C; Chen Z; Wu J
    Phys Rev E; 2020 May; 101(5-1):053309. PubMed ID: 32575276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Moving Particles Through a Finite Element Mesh.
    Peskin AP; Hardin GR
    J Res Natl Inst Stand Technol; 1998; 103(1):77-91. PubMed ID: 28009377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
    Ying W; Henriquez CS
    J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impulse Fluid Simulation.
    Feng F; Liu J; Xiong S; Yang S; Zhang Y; Zhu B
    IEEE Trans Vis Comput Graph; 2023 Jun; 29(6):3081-3092. PubMed ID: 35133965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics.
    Seo JH; Eslami P; Caplan J; Tamargo RJ; Mittal R
    Front Physiol; 2018; 9():681. PubMed ID: 29946264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.
    Li Z; Song P
    Comput Struct; 2013 Jun; 122():249-258. PubMed ID: 23794763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
    Boschitsch AH; Fenley MO
    J Chem Theory Comput; 2011 May; 7(5):1524-1540. PubMed ID: 21984876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of solution reconstruction in hypersonic viscous computations using a sharp interface immersed boundary method.
    Brahmachary S; Natarajan G; Kulkarni V; Sahoo N; Ashok V; Kumar V
    Phys Rev E; 2021 Apr; 103(4-1):043302. PubMed ID: 34005876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement.
    Lee P; Griffith BE; Peskin CS
    J Comput Phys; 2010 Jul; 229(13):5208-5227. PubMed ID: 20454540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-field-based lattice Boltzmann model for liquid-gas-solid flow.
    He Q; Li Y; Huang W; Hu Y; Wang Y
    Phys Rev E; 2019 Sep; 100(3-1):033314. PubMed ID: 31639949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FLOW DYNAMIC COMPARISON BETWEEN RECESSED HINGE AND OPEN PIVOT BI-LEAFLET HEART VALVE DESIGNS.
    Govindarajan V; Udaykumar HS; Chandran KB
    J Mech Med Biol; 2009 Jun; 9(2):161-176. PubMed ID: 19865586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From medical images to flow computations without user-generated meshes.
    Dillard SI; Mousel JA; Shrestha L; Raghavan ML; Vigmostad SC
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1057-83. PubMed ID: 24753504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turbulent finite element model applied for blood flow calculation in arterial bifurcation.
    Nikolić A; Topalović M; Simić V; Filipović N
    Comput Methods Programs Biomed; 2021 Sep; 209():106328. PubMed ID: 34407452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles.
    Yamamoto R; Molina JJ; Nakayama Y
    Soft Matter; 2021 Apr; 17(16):4226-4253. PubMed ID: 33908448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations.
    Maeda K; Colonius T
    Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.