These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36981520)

  • 1. Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement.
    Alwakid G; Gouda W; Humayun M
    Healthcare (Basel); 2023 Mar; 11(6):. PubMed ID: 36981520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN.
    Alwakid G; Gouda W; Humayun M
    Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing diabetic retinopathy classification using deep learning.
    Alwakid G; Gouda W; Humayun M; Jhanjhi NZ
    Digit Health; 2023; 9():20552076231203676. PubMed ID: 37766903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-enhanced diabetic retinopathy image classification.
    Alwakid G; Gouda W; Humayun M; Jhanjhi NZ
    Digit Health; 2023; 9():20552076231194942. PubMed ID: 37588156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.
    Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR
    Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Diabetic Retinopathy Using Weighted Fusion Deep Learning Based on Dual-Channel Fundus Scans.
    Nneji GU; Cai J; Deng J; Monday HN; Hossin MA; Nahar S
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification.
    Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723
    [No Abstract]   [Full Text] [Related]  

  • 9. DR-NASNet: Automated System to Detect and Classify Diabetic Retinopathy Severity Using Improved Pretrained NASNet Model.
    Sajid MZ; Hamid MF; Youssef A; Yasmin J; Perumal G; Qureshi I; Naqi SM; Abbas Q
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.
    Gupta S; Thakur S; Gupta A
    Multimed Tools Appl; 2022; 81(10):14475-14501. PubMed ID: 35233182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection.
    Khalifa NEM; Loey M; Taha MHN; Mohamed HNET
    Acta Inform Med; 2019 Dec; 27(5):327-332. PubMed ID: 32210500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique.
    Wahab Sait AR
    Diagnostics (Basel); 2023 Oct; 13(19):. PubMed ID: 37835861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric.
    Chilukoti SV; Shan L; Tida VS; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):37. PubMed ID: 38321416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A difficulty-aware and task-augmentation method based on meta-learning model for few-shot diabetic retinopathy classification.
    Liu X; Dong X; Li T; Zou X; Cheng C; Jiang Z; Gao Z; Duan S; Chen M; Liu T; Huang P; Li D; Lu H
    Quant Imaging Med Surg; 2024 Jan; 14(1):861-876. PubMed ID: 38223039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDLDR: An Ensemble Deep Learning Technique for Detection and Classification of Diabetic Retinopathy.
    Mondal SS; Mandal N; Singh KK; Singh A; Izonin I
    Diagnostics (Basel); 2022 Dec; 13(1):. PubMed ID: 36611416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid approach for diagnosing diabetic retinopathy from fundus image exploiting deep features.
    Mahmood MAI; Aktar N; Kader MF
    Heliyon; 2023 Sep; 9(9):e19625. PubMed ID: 37809795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset.
    Roy S; Tyagi M; Bansal V; Jain V
    Comput Biol Med; 2022 Nov; 150():106092. PubMed ID: 36208598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.