These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 36982310)
1. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Zhang Y; Xiao P; Pan D; Zhou X Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982310 [TBL] [Abstract][Full Text] [Related]
2. Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554 [TBL] [Abstract][Full Text] [Related]
3. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
4. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803 [TBL] [Abstract][Full Text] [Related]
5. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Song S; He J; Gao M; Huang Y; Cheng X; Su Z Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325 [TBL] [Abstract][Full Text] [Related]
6. Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum. Su Z; Zhang Z; Yu J; Yuan C; Shen Y; Wang J; Su L; Wang M Microb Cell Fact; 2022 Oct; 21(1):218. PubMed ID: 36266684 [TBL] [Abstract][Full Text] [Related]
7. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830 [TBL] [Abstract][Full Text] [Related]
8. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
9. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum. Wang X; Chen R; Wu Y; Wang D; Wei D Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785 [TBL] [Abstract][Full Text] [Related]
10. Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. Xiong LB; Liu HH; Song XW; Meng XG; Liu XZ; Ji YQ; Wang FQ; Wei DZ J Biotechnol; 2020 Nov; 323():341-346. PubMed ID: 32976867 [TBL] [Abstract][Full Text] [Related]
11. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
12. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Zhao YQ; Liu YJ; Ji WT; Liu K; Gao B; Tao XY; Zhao M; Wang FQ; Wei DZ Microb Cell Fact; 2022 Apr; 21(1):59. PubMed ID: 35397581 [TBL] [Abstract][Full Text] [Related]
14. Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Yuan C; Song S; He J; Zhang J; Liu X; Pena EL; Sun J; Shi J; Su Z; Zhang B Appl Environ Microbiol; 2022 Nov; 88(22):e0130322. PubMed ID: 36286498 [TBL] [Abstract][Full Text] [Related]
15. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum. Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826 [TBL] [Abstract][Full Text] [Related]
16. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. Feng J; Wu Q; Zhu D; Ma Y ChemSusChem; 2022 May; 15(9):e202102399. PubMed ID: 35089653 [TBL] [Abstract][Full Text] [Related]
17. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591 [TBL] [Abstract][Full Text] [Related]
19. Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione. He K; Sun H; Song H Biotechnol Lett; 2018 Apr; 40(4):673-678. PubMed ID: 29392454 [TBL] [Abstract][Full Text] [Related]
20. Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis. Chen X; Zhang B; Jiang X; Liu Z; Zheng Y World J Microbiol Biotechnol; 2024 Oct; 40(11):350. PubMed ID: 39404941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]