BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36982394)

  • 1. Inactivation of
    Di Noia MA; Scarcia P; Agrimi G; Ocheja OB; Wahid E; Pisano I; Paradies E; Palmieri L; Guaragnella C; Guaragnella N
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function.
    Liu Z; Butow RA
    Mol Cell Biol; 1999 Oct; 19(10):6720-8. PubMed ID: 10490611
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Guaragnella N; Agrimi G; Scarcia P; Suriano C; Pisano I; Bobba A; Mazzoni C; Palmieri L; Giannattasio S
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of Mitochondrial DNA Provides Metabolic Advantage in Yeast Osmoadaptation.
    Di Noia MA; Ocheja OB; Scarcia P; Pisano I; Messina E; Agrimi G; Palmieri L; Guaragnella N
    Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.
    Guaragnella N; Ždralević M; Lattanzio P; Marzulli D; Pracheil T; Liu Z; Passarella S; Marra E; Giannattasio S
    Biochim Biophys Acta; 2013 Dec; 1833(12):2765-2774. PubMed ID: 23906793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Mitochondrial Retrograde Signaling in Yeast Model Systems.
    Guaragnella N; Ždralević M; Palková Z; Giannattasio S
    Methods Mol Biol; 2021; 2276():87-102. PubMed ID: 34060034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins.
    Chelstowska A; Butow RA
    J Biol Chem; 1995 Jul; 270(30):18141-6. PubMed ID: 7629125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast as a tool to study mitochondrial retrograde pathway en route to cell stress response.
    Ždralević M; Guaragnella N; Giannattasio S
    Methods Mol Biol; 2015; 1265():321-31. PubMed ID: 25634284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.
    Bourges I; Mucchielli MH; Herbert CJ; Guiard B; Dujardin G; Meunier B
    J Mol Biol; 2009 Apr; 387(5):1081-91. PubMed ID: 19245817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
    Zhang T; Bu P; Zeng J; Vancura A
    J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of excess succinate and retrograde control of metabolite accumulation in yeast tricarboxylic cycle mutants.
    Lin AP; Anderson SL; Minard KI; McAlister-Henn L
    J Biol Chem; 2011 Sep; 286(39):33737-46. PubMed ID: 21841001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae.
    Torelli NQ; Ferreira-Júnior JR; Kowaltowski AJ; da Cunha FM
    Free Radic Biol Med; 2015 Apr; 81():30-7. PubMed ID: 25578655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function.
    Raja V; Salsaa M; Joshi AS; Li Y; van Roermund CWT; Saadat N; Lazcano P; Schmidtke M; Hüttemann M; Gupta SV; Wanders RJA; Greenberg ML
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 May; 1864(5):654-661. PubMed ID: 30731133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of fungal RTG2 genes in retrograde signaling of Saccharomyces cerevisiae.
    Ünlü ES; Narayanan L; Gordon DM
    FEMS Yeast Res; 2013 Aug; 13(5):495-503. PubMed ID: 23711018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factors
    Laera L; Guaragnella N; Ždralević M; Marzulli D; Liu Z; Giannattasio S
    Microb Cell; 2016 Dec; 3(12):621-631. PubMed ID: 28357334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RetroGREAT signaling: The lessons we learn from yeast.
    Bui THD; Labedzka-Dmoch K
    IUBMB Life; 2024 Jan; 76(1):26-37. PubMed ID: 37565710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1.
    Rosenkrantz M; Kell CS; Pennell EA; Devenish LJ
    Mol Microbiol; 1994 Jul; 13(1):119-31. PubMed ID: 7984086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.
    Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM
    BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies.
    Plocek V; Fadrhonc K; Maršíková J; Váchová L; Pokorná A; Hlaváček O; Wilkinson D; Palková Z
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae.
    Zyrina AN; Smirnova EA; Markova OV; Severin FF; Knorre DA
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27864171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.