BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36982411)

  • 1. Ligand-Induced Activation of GPR110 (ADGRF1) to Improve Visual Function Impaired by Optic Nerve Injury.
    Kwon HS; Kevala K; Qian H; Abu-Asab M; Patnaik S; Marugan J; Kim HY
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-Induced GPR110 Activation Facilitates Axon Growth after Injury.
    Kwon H; Kevala K; Xin H; Patnaik S; Marugan J; Kim HY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33806166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPR110 ligands reduce chronic optic tract gliosis and visual deficit following repetitive mild traumatic brain injury in mice.
    Chen H; Kevala K; Aflaki E; Marugan J; Kim HY
    J Neuroinflammation; 2021 Jul; 18(1):157. PubMed ID: 34273979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice.
    Masuda S; Tanaka S; Shiraki H; Sotomaru Y; Harada K; Hide I; Kiuchi Y; Sakai N
    Neurobiol Dis; 2022 Oct; 172():105811. PubMed ID: 35809764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush.
    Ribas VT; Koch JC; Michel U; Bähr M; Lingor P
    Mol Neurobiol; 2017 Jan; 54(1):72-86. PubMed ID: 26732591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma.
    Joly S; Pernet V
    J Neurochem; 2016 Aug; 138(4):571-86. PubMed ID: 27309795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual recovery following optic nerve crush in male and female wild-type and TRIF-deficient mice.
    Du YL; Sergeeva EG; Stein DG
    Restor Neurol Neurosci; 2020; 38(5):355-368. PubMed ID: 32986632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury.
    Mak HK; Ng SH; Ren T; Ye C; Leung CK
    Exp Eye Res; 2020 Mar; 192():107938. PubMed ID: 31972211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglia Are Irrelevant for Neuronal Degeneration and Axon Regeneration after Acute Injury.
    Hilla AM; Diekmann H; Fischer D
    J Neurosci; 2017 Jun; 37(25):6113-6124. PubMed ID: 28539419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exacerbating effects of single-dose acute ethanol exposure on neuroinflammation and amelioration by GPR110 (ADGRF1) activation.
    Banerjee S; Park T; Kim YS; Kim HY
    J Neuroinflammation; 2023 Aug; 20(1):187. PubMed ID: 37580715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.
    Peng S; Shi Z; Su H; So KF; Cui Q
    Exp Eye Res; 2016 Jul; 148():90-96. PubMed ID: 27264241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve.
    Vajda F; Jordi N; Dalkara D; Joly S; Christ F; Tews B; Schwab ME; Pernet V
    Cell Death Differ; 2015 Feb; 22(2):323-35. PubMed ID: 25257170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPR110 (ADGRF1) mediates anti-inflammatory effects of N-docosahexaenoylethanolamine.
    Park T; Chen H; Kim HY
    J Neuroinflammation; 2019 Nov; 16(1):225. PubMed ID: 31730008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse.
    Patel AK; Park KK; Hackam AS
    Neuroscience; 2017 Feb; 343():372-383. PubMed ID: 28011153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models.
    Wang X; Lin J; Arzeno A; Choi JY; Boccio J; Frieden E; Bhargava A; Maynard G; Tsai JC; Strittmatter SM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(2):1357-66. PubMed ID: 25655801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKC isozymes in the enhanced regrowth of retinal neurites after optic nerve injury.
    Wu DY; Zheng JQ; McDonald MA; Chang B; Twiss JL
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2783-90. PubMed ID: 12766087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of outer retinal thickness and function in mice after experimental optic nerve trauma.
    Lypka KR; Carmy-Bennun T; Garces KN; Venanzi AW; Hackam AS
    BMC Ophthalmol; 2022 Dec; 22(1):502. PubMed ID: 36539722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nrn1 Overexpression Attenuates Retinal Ganglion Cell Apoptosis, Promotes Axonal Regeneration, and Improves Visual Function Following Optic Nerve Crush in Rats.
    Huang T; Li H; Zhang S; Liu F; Wang D; Xu J
    J Mol Neurosci; 2021 Jan; 71(1):66-79. PubMed ID: 32607759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury.
    Miyake K; Yoshida M; Inoue Y; Hata Y
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2356-61. PubMed ID: 17460302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of immunophilin-ligands (FK506 and V-10,367) on survival and regeneration of rat retinal ganglion cells in vitro and after optic nerve crush in vivo.
    Rosenstiel P; Schramm P; Isenmann S; Brecht S; Eickmeier C; Bürger E; Herdegen T; Sievers J; Lucius R
    J Neurotrauma; 2003 Mar; 20(3):297-307. PubMed ID: 12820684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.