Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36982429)

  • 1. Combinatorial Network of Transcriptional and miRNA Regulation in Colorectal Cancer.
    Kumar R; Mahmoud MM; Tashkandi HM; Haque S; Harakeh S; Ponnusamy K; Haider S
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long non-coding RNA EGFR-AS1 in colorectal cancer: potential role in tumorigenesis and survival via miRNA-133b sponge and EGFR/STAT3 axis regulation.
    Atef MM; Amer AI; Hafez YM; Elsebaey MA; Saber SA; Abd El-Khalik SR
    Br J Biomed Sci; 2021 Jul; 78(3):122-129. PubMed ID: 33211633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-related transcription factor regulatory networks in human colorectal cancer.
    Hao S; Huo S; Du Z; Yang Q; Ren M; Liu S; Liu T; Zhang G
    Medicine (Baltimore); 2019 Apr; 98(15):e15158. PubMed ID: 30985693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis.
    Fu J; Tang W; Du P; Wang G; Chen W; Li J; Zhu Y; Gao J; Cui L
    BMC Syst Biol; 2012 Jun; 6():68. PubMed ID: 22703586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer.
    Wang H; Luo J; Liu C; Niu H; Wang J; Liu Q; Zhao Z; Xu H; Ding Y; Sun J; Zhang Q
    BMC Bioinformatics; 2017 Sep; 18(1):388. PubMed ID: 28865443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of the Anti-Tumor Mechanism of Calycosin Against Colorectal Cancer by Using System Pharmacology Approach.
    Huang C; Li R; Shi W; Huang Z
    Med Sci Monit; 2019 Jul; 25():5589-5593. PubMed ID: 31352466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer.
    Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S
    Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Role for MiR-520a-3p in Regulating EGFR Expression in Colorectal Cancer.
    Zhang R; Liu R; Liu C; Niu Y; Zhang J; Guo B; Zhang CY; Li J; Yang J; Chen X
    Cell Physiol Biochem; 2017; 42(4):1559-1574. PubMed ID: 28738328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis.
    Pizzini S; Bisognin A; Mandruzzato S; Biasiolo M; Facciolli A; Perilli L; Rossi E; Esposito G; Rugge M; Pilati P; Mocellin S; Nitti D; Bortoluzzi S; Zanovello P
    BMC Genomics; 2013 Aug; 14():589. PubMed ID: 23987127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene module based regulator inference identifying miR-139 as a tumor suppressor in colorectal cancer.
    Gu J; Chen Y; Huang H; Yin L; Xie Z; Zhang MQ
    Mol Biosyst; 2014 Dec; 10(12):3249-54. PubMed ID: 25286864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network.
    Gov E; Arga KY
    IET Syst Biol; 2016 Dec; 10(6):219-228. PubMed ID: 27879476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach.
    Al-Mustanjid M; Mahmud SMH; Royel MRI; Rahman MH; Islam T; Rahman MR; Moni MA
    Genomics; 2020 Sep; 112(5):3416-3426. PubMed ID: 32535071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study.
    Chen E; Li Q; Wang H; Yang F; Min L; Yang J
    Biomed Pharmacother; 2018 Oct; 106():1370-1377. PubMed ID: 30119209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs targeting EGFR signalling pathway in colorectal cancer.
    Mlcochova J; Faltejskova P; Nemecek R; Svoboda M; Slaby O
    J Cancer Res Clin Oncol; 2013 Oct; 139(10):1615-24. PubMed ID: 23817698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer.
    Sengupta D; Bandyopadhyay S
    Mol Biosyst; 2013 Jun; 9(6):1360-71. PubMed ID: 23475160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Analysis of miRNA and their Gene Targets Significantly Involved in Colorectal Cancer Progression.
    Kandhavelu J; Subramanian K; Khan A; Omar A; Ruff P; Penny C
    Microrna; 2019; 8(1):68-75. PubMed ID: 30073936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the perturbed microRNA regulatory networks from gene expression data using a network propagation based method.
    Wang T; Gu J; Li Y
    BMC Bioinformatics; 2014 Jul; 15(1):255. PubMed ID: 25069957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.