These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36982497)

  • 1. miRNAs in Uremic Cardiomyopathy: A Comprehensive Review.
    D'Agostino M; Mauro D; Zicarelli M; Carullo N; Greco M; Andreucci M; Coppolino G; Bolignano D
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy.
    Roncarati R; Viviani Anselmi C; Losi MA; Papa L; Cavarretta E; Da Costa Martins P; Contaldi C; Saccani Jotti G; Franzone A; Galastri L; Latronico MV; Imbriaco M; Esposito G; De Windt L; Betocchi S; Condorelli G
    J Am Coll Cardiol; 2014 Mar; 63(9):920-7. PubMed ID: 24161319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-oxidative priming but maintained cardiac function in a broad spectrum of murine models of chronic kidney disease.
    Wollenhaupt J; Frisch J; Harlacher E; Wong DWL; Jin H; Schulte C; Vondenhoff S; Moellmann J; Klinkhammer BM; Zhang L; Baleanu-Curaj A; Liehn EA; Speer T; Kazakov A; Werner C; van der Vorst EPC; Selejan SR; Hohl M; Böhm M; Kramann R; Biessen EAL; Lehrke M; Marx N; Jankowski J; Maack C; Boor P; Prates Roma L; Noels H
    Redox Biol; 2022 Oct; 56():102459. PubMed ID: 36099852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4
    Han B; Zhang X; Wang L; Yuan W
    Microbiol Spectr; 2023 Feb; 11(1):e0310122. PubMed ID: 36788674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic review and meta-analysis of murine models of uremic cardiomyopathy.
    Soppert J; Frisch J; Wirth J; Hemmers C; Boor P; Kramann R; Vondenhoff S; Moellmann J; Lehrke M; Hohl M; van der Vorst EPC; Werner C; Speer T; Maack C; Marx N; Jankowski J; Roma LP; Noels H
    Kidney Int; 2022 Feb; 101(2):256-273. PubMed ID: 34774555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach.
    Becker S; Florian A; Patrascu A; Rösch S; Waltenberger J; Sechtem U; Schwab M; Schaeffeler E; Yilmaz A
    J Cardiovasc Magn Reson; 2016 May; 18(1):25. PubMed ID: 27150296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of AhR/CYP1s signaling pathway mediated ROS production in uremic cardiomyopathy.
    Lu W; Cheng S; Xu J; Xiao Z; Yu Y; Xie Q; Fang Y; Chen R; Shen B; Xie Y; Ding X
    Toxicol Lett; 2024 May; 396():81-93. PubMed ID: 38670245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the natural history of uremic cardiomyopathy in chronic kidney disease: the role of cardiovascular magnetic resonance.
    Edwards NC; Moody WE; Chue CD; Ferro CJ; Townend JN; Steeds RP
    JACC Cardiovasc Imaging; 2014 Jul; 7(7):703-14. PubMed ID: 25034920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac micro-RNA and transcriptomic profile of a novel swine model of chronic kidney disease and left ventricular diastolic dysfunction.
    Chade AR; Eirin A
    Am J Physiol Heart Circ Physiol; 2022 Oct; 323(4):H659-H669. PubMed ID: 36018756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs as Biomarkers in Hypertrophic Cardiomyopathy: Current State of the Art.
    Angelopoulos A; Oikonomou E; Vogiatzi G; Antonopoulos A; Tsalamandris S; Georgakopoulos C; Papanikolaou P; Lazaros G; Charalambous G; Siasos G; Vlachopoulos C; Tousoulis D
    Curr Med Chem; 2021; 28(36):7400-7412. PubMed ID: 33820510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of chronic inflammation via monocyte chemoattractant protein-1 in uraemic cardiomyopathy: a human biopsy study.
    Nakano T; Onoue K; Seno A; Ishihara S; Nakada Y; Nakagawa H; Ueda T; Nishida T; Soeda T; Watanabe M; Kawakami R; Hatakeyama K; Sakaguchi Y; Ohbayashi C; Saito Y
    ESC Heart Fail; 2021 Aug; 8(4):3156-3167. PubMed ID: 33988313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the kisspeptin-KISS1R axis in the pathogenesis of chronic kidney disease and uremic cardiomyopathy.
    Dinh H; Kovács ZZA; Kis M; Kupecz K; Sejben A; Szűcs G; Márványkövi F; Siska A; Freiwan M; Pósa SP; Galla Z; Ibos KE; Bodnár É; Lauber GY; Goncalves AIA; Acar E; Kriston A; Kovács F; Horváth P; Bozsó Z; Tóth G; Földesi I; Monostori P; Cserni G; Podesser BK; Lehoczki A; Pokreisz P; Kiss A; Dux L; Csabafi K; Sárközy M
    Geroscience; 2024 Apr; 46(2):2463-2488. PubMed ID: 37987885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Potential of Targeting Fibroblast Growth Factor-23 and αKlotho in the Treatment of Uremic Cardiomyopathy.
    Law JP; Price AM; Pickup L; Radhakrishnan A; Weston C; Jones AM; McGettrick HM; Chua W; Steeds RP; Fabritz L; Kirchhof P; Pavlovic D; Townend JN; Ferro CJ
    J Am Heart Assoc; 2020 Apr; 9(7):e016041. PubMed ID: 32212912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.
    Lin CY; Hsu YJ; Hsu SC; Chen Y; Lee HS; Lin SH; Huang SM; Tsai CS; Shih CC
    J Mol Cell Cardiol; 2015 Aug; 85():249-61. PubMed ID: 26093151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis.
    Wang J; Liew OW; Richards AM; Chen YT
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Unclassified cardiomyopathies: subspecies and their transformation].
    Ikeda Y; Kawai S; Okada R; Yamaguchi H
    J Cardiol; 1998 Feb; 31(2):91-7. PubMed ID: 9513036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy.
    Abdel Rhman M; Owira P
    J Pharm Pharmacol; 2022 Nov; 74(12):1663-1676. PubMed ID: 36130185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmonella pathogenicity island 1 knockdown confers protection against myocardial fibrosis and inflammation in uremic cardiomyopathy via down-regulation of S100 Calcium Binding Protein A8/A9 transcription.
    Cai X; Hong L; Liu Y; Huang X; Lai H; Shao L
    Ren Fail; 2022 Dec; 44(1):1819-1832. PubMed ID: 36299239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage-Derived Exosomal Mir-155 Regulating Cardiomyocyte Pyroptosis and Hypertrophy in Uremic Cardiomyopathy.
    Wang B; Wang ZM; Ji JL; Gan W; Zhang A; Shi HJ; Wang H; Lv L; Li Z; Tang T; Du J; Wang XH; Liu BC
    JACC Basic Transl Sci; 2020 Feb; 5(2):148-166. PubMed ID: 32140622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.