BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36982574)

  • 21. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics.
    Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M
    Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis.
    Wang HY; Zhao JP; Su YS; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Batch alignment of single-cell transcriptomics data using deep metric learning.
    Yu X; Xu X; Zhang J; Li X
    Nat Commun; 2023 Feb; 14(1):960. PubMed ID: 36810607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data.
    Guo ZH; Wu Y; Wang S; Zhang Q; Shi JM; Wang YB; Chen ZH
    BMC Bioinformatics; 2023 Dec; 24(1):481. PubMed ID: 38104057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics.
    Dong J; Zhang Y; Wang F
    BMC Bioinformatics; 2022 May; 23(1):161. PubMed ID: 35513780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.
    Wang T; Zhao H; Xu Y; Wang Y; Shang X; Peng J; Xiao B
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-preserved dimension reduction using joint triplets sampling for multi-batch integration of single-cell transcriptomic data.
    Xu X; Li X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder.
    Zhu X; Li J; Lin Y; Zhao L; Wang J; Peng X
    J Comput Biol; 2022 Oct; 29(10):1074-1084. PubMed ID: 35834604
    [No Abstract]   [Full Text] [Related]  

  • 35. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome.
    Ren T; Huang S; Liu Q; Wang G
    Comput Biol Med; 2023 Jan; 152():106409. PubMed ID: 36512878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder.
    Wang D; Gu J
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):320-331. PubMed ID: 30576740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep matrix factorization based approach for single-cell RNA-seq data clustering.
    Liang Z; Zheng R; Chen S; Yan X; Li M
    Methods; 2022 Sep; 205():114-122. PubMed ID: 35777719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.