BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36982600)

  • 1. Origin of Elevated S-Glutathionylated GAPDH in Chronic Neurodegenerative Diseases.
    Hyslop PA; Boggs LN; Chaney MO
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme.
    Barinova KV; Serebryakova MV; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3167-3177. PubMed ID: 28935607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM; Hagedorn TD; Kennett KL
    Cytoskeleton (Hoboken); 2014 Dec; 71(12):707-18. PubMed ID: 25545749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein.
    Barinova KV; Serebryakova MV; Eldarov MA; Kulikova AA; Mitkevich VA; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129560. PubMed ID: 32061786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
    Marri L; Thieulin-Pardo G; Lebrun R; Puppo R; Zaffagnini M; Trost P; Gontero B; Sparla F
    Biochimie; 2014 Feb; 97():228-37. PubMed ID: 24211189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase: role of thiol oxidation and catalysis by glutaredoxin.
    Cotgreave IA; Gerdes R; Schuppe-Koistinen I; Lind C
    Methods Enzymol; 2002; 348():175-82. PubMed ID: 11885270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
    Souza JM; Radi R
    Arch Biochem Biophys; 1998 Dec; 360(2):187-94. PubMed ID: 9851830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidant-induced glutathionylation at protein disulfide bonds.
    Carroll L; Jiang S; Irnstorfer J; Beneyto S; Ignasiak MT; Rasmussen LM; Rogowska-Wrzesinska A; Davies MJ
    Free Radic Biol Med; 2020 Nov; 160():513-525. PubMed ID: 32877736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-nitrosylation and S-glutathionylation of GAPDH: Similarities, differences, and relationships.
    Medvedeva MV; Kleimenov SY; Samygina VR; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta Gen Subj; 2023 Sep; 1867(9):130418. PubMed ID: 37355052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae.
    Shenton D; Perrone G; Quinn KA; Dawes IW; Grant CM
    J Biol Chem; 2002 May; 277(19):16853-9. PubMed ID: 11882660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of GAPDH Redox Signaling by H
    Hyslop PA; Chaney MO
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase.
    Muronetz VI; Melnikova AK; Saso L; Schmalhausen EV
    Curr Med Chem; 2020; 27(13):2040-2058. PubMed ID: 29848267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides.
    Brodie AE; Reed DJ
    Arch Biochem Biophys; 1990 Jan; 276(1):212-8. PubMed ID: 2297224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase.
    Mohr S; Hallak H; de Boitte A; Lapetina EG; Brüne B
    J Biol Chem; 1999 Apr; 274(14):9427-30. PubMed ID: 10092623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.
    Holtgrefe S; Gohlke J; Starmann J; Druce S; Klocke S; Altmann B; Wojtera J; Lindermayr C; Scheibe R
    Physiol Plant; 2008 Jun; 133(2):211-28. PubMed ID: 18298409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the Oxidation State and Enzymatic Activity of Glyceraldehyde Phosphate Dehydrogenase (GAPDH).
    Montllor-Albalate C; Thompson AE; Kim H; Reddi AR
    Methods Mol Biol; 2023; 2675():219-236. PubMed ID: 37258767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide.
    Ishii T; Sunami O; Nakajima H; Nishio H; Takeuchi T; Hata F
    Biochem Pharmacol; 1999 Jul; 58(1):133-43. PubMed ID: 10403526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.