These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36982690)
81. Eco-evolutionary significance of domesticated retroelements in microbial genomes. Paul BG; Eren AM Mob DNA; 2022 Feb; 13(1):6. PubMed ID: 35197094 [TBL] [Abstract][Full Text] [Related]
82. Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature. Olijslager LH; Weijers D; Swarts DC NAR Genom Bioinform; 2024 Sep; 6(3):lqae105. PubMed ID: 39165676 [TBL] [Abstract][Full Text] [Related]
83. Adaptive immunity to retroelements promotes barrier integrity. Wells AC; Lima-Junior DS; Link VM; Smelkinson M; Krishnamurthy SR; Chi L; Segrist E; Rivera CA; Teijeiro A; Bouladoux N; Belkaid Y bioRxiv; 2024 Aug; ():. PubMed ID: 39149266 [TBL] [Abstract][Full Text] [Related]
84. An OLD protein teaches us new tricks: prokaryotic antiviral defense. Ednacot EMQ; Morehouse BR Nat Commun; 2024 Mar; 15(1):2527. PubMed ID: 38514789 [TBL] [Abstract][Full Text] [Related]
85. Tentaclins-A Novel Family of Phage Receptor-Binding Proteins That Can Be Hypermutated by DGR Systems. Baykov IK; Tikunov AY; Babkin IV; Fedorets VA; Zhirakovskaia EV; Tikunova NV Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139153 [TBL] [Abstract][Full Text] [Related]
86. Diversity-Generating Retroelements in Prokaryotic Immunity. Belalov IS; Sokolov AA; Letarov AV Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982690 [TBL] [Abstract][Full Text] [Related]
88. Viral diversity threshold for adaptive immunity in prokaryotes. Weinberger AD; Wolf YI; Lobkovsky AE; Gilmore MS; Koonin EV mBio; 2012 Dec; 3(6):e00456-12. PubMed ID: 23221803 [TBL] [Abstract][Full Text] [Related]
89. The size of the immune repertoire of bacteria. Bradde S; Nourmohammad A; Goyal S; Balasubramanian V Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5144-5151. PubMed ID: 32071241 [TBL] [Abstract][Full Text] [Related]
90. The abortive infection functions of CRISPR-Cas and Argonaute. Chen Y; Zeng Z; She Q; Han W Trends Microbiol; 2023 Apr; 31(4):405-418. PubMed ID: 36463018 [TBL] [Abstract][Full Text] [Related]
91. Bacterial origins of human cell-autonomous innate immune mechanisms. Wein T; Sorek R Nat Rev Immunol; 2022 Oct; 22(10):629-638. PubMed ID: 35396464 [TBL] [Abstract][Full Text] [Related]
92. Ecology and molecular targets of hypermutation in the global microbiome. Roux S; Paul BG; Bagby SC; Nayfach S; Allen MA; Attwood G; Cavicchioli R; Chistoserdova L; Gruninger RJ; Hallam SJ; Hernandez ME; Hess M; Liu WT; McAllister TA; O'Malley MA; Peng X; Rich VI; Saleska SR; Eloe-Fadrosh EA Nat Commun; 2021 May; 12(1):3076. PubMed ID: 34031405 [TBL] [Abstract][Full Text] [Related]
93. Microbial Arsenal of Antiviral Defenses. Part II. Isaev AB; Musharova OS; Severinov KV Biochemistry (Mosc); 2021 Apr; 86(4):449-470. PubMed ID: 33941066 [TBL] [Abstract][Full Text] [Related]
94. Extreme C-to-A Hypermutation at a Site of Cytosine-N4 Methylation. Cherry JL mBio; 2021 Apr; 12(2):. PubMed ID: 33849975 [TBL] [Abstract][Full Text] [Related]
95. Microbial Arsenal of Antiviral Defenses - Part I. Isaev AB; Musharova OS; Severinov KV Biochemistry (Mosc); 2021 Mar; 86(3):319-337. PubMed ID: 33838632 [TBL] [Abstract][Full Text] [Related]