These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36982795)

  • 1. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins.
    Liu Z; Gong Y; Bao Y; Guo Y; Wang H; Lin GN
    Front Bioeng Biotechnol; 2020; 8():629937. PubMed ID: 33569377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Topology Prediction of Alpha-Helical Transmembrane Protein Based on Deep Multi-Scale Convolutional Neural Network.
    Yang Y; Yu J; Liu Z; Wang X; Wang H; Ma Z; Xu D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):295-304. PubMed ID: 32750879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden neural networks for transmembrane protein topology prediction.
    Tamposis IA; Sarantopoulou D; Theodoropoulou MC; Stasi EA; Kontou PI; Tsirigos KD; Bagos PG
    Comput Struct Biotechnol J; 2021; 19():6090-6097. PubMed ID: 34849210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
    Li B; Mendenhall J; Capra JA; Meiler J
    J Proteome Res; 2021 Aug; 20(8):4089-4100. PubMed ID: 34236204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving transmembrane protein consensus topology prediction using inter-helical interaction.
    Wang H; Zhang C; Shi X; Zhang L; Zhou Y
    Biochim Biophys Acta; 2012 Nov; 1818(11):2679-86. PubMed ID: 22683598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane protein alignment and fold recognition based on predicted topology.
    Wang H; He Z; Zhang C; Zhang L; Xu D
    PLoS One; 2013; 8(7):e69744. PubMed ID: 23894534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts.
    Miao Z; Wang Q; Xiao X; Kamal GM; Song L; Zhang X; Li C; Zhou X; Jiang B; Liu M
    J Biomol NMR; 2021 Dec; 75(10-12):393-400. PubMed ID: 34510297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory.
    Yuan L; Ma Y; Liu Y
    Front Bioeng Biotechnol; 2023; 11():1051268. PubMed ID: 36860882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism.
    Casabianca P; Zhang Y; Martínez-García M; Wan J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal prediction of secondary crashes combining stacked sparse auto-encoder and long short-term memory.
    Li H; Gao Q; Zhang Z; Zhang Y; Ren G
    Accid Anal Prev; 2023 Oct; 191():107205. PubMed ID: 37413700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional ProteinUnetLM competitive with long short-term memory-based protein secondary structure predictors.
    Kotowski K; Fabian P; Roterman I; Stapor K
    Proteins; 2023 May; 91(5):608-618. PubMed ID: 36448315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein secondary structure by the improved TCN-BiLSTM-MHA model with knowledge distillation.
    Zhao L; Li J; Zhan W; Jiang X; Zhang B
    Sci Rep; 2024 Jul; 14(1):16488. PubMed ID: 39020005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction.
    Zhao Y; Liu Y
    PLoS One; 2021; 16(2):e0245982. PubMed ID: 33534819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MemDis: Predicting Disordered Regions in Transmembrane Proteins.
    Dobson L; Tusnády GE
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.