BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36982950)

  • 1. Transcriptomic Modulation Reveals the Specific Cellular Response in Chinese Sea Bass (
    Zhu Q; Li M; Lu W; Wang Y; Li X; Cheng J
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and Transcriptomic Landscape and Evolutionary Dynamics of Heat Shock Proteins in Spotted Sea Bass (
    Li X; Liu S; Wang Y; Lu W; Zhang Q; Cheng J
    Biology (Basel); 2022 Feb; 11(3):. PubMed ID: 35336727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untargeted LC-MS metabolomics reveals the metabolic responses in the Eriocheir sinensis gills exposed to salinity and alkalinity stress.
    Wang S; Song Y; Luo L; Zhang R; Guo K; Zhao Z
    Comp Biochem Physiol C Toxicol Pharmacol; 2024 Jul; 281():109908. PubMed ID: 38580071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus).
    Zhang X; Wen H; Wang H; Ren Y; Zhao J; Li Y
    PLoS One; 2017; 12(3):e0173238. PubMed ID: 28253338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Characterization of Aquaporins (aqps) in Lateolabrax maculatus: Evolution and Expression Patterns During Freshwater Acclimation.
    Zhang X; Yu P; Wen H; Qi X; Tian Y; Zhang K; Fu Q; Li Y; Li C
    Mar Biotechnol (NY); 2021 Oct; 23(5):696-709. PubMed ID: 34595589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 14-3-3 gene family in spotted sea bass (Lateolabrax maculatus): Genome-wide identification, phylogenetic analysis and expression profiles after salinity stress.
    Zhang KQ; Wen HS; Li JF; Qi X; Fan HY; Zhang XY; Tian Y; Liu Y; Wang HL; Li Y
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():1-11. PubMed ID: 31082484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus).
    Hu W; Cao Y; Liu Q; Yuan C; Hu Z
    Mar Pollut Bull; 2024 Jun; 203():116432. PubMed ID: 38728954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of juvenile Chinese sea bass (Lateolabrax maculatus) anesthetized by MS-222 (tricaine methanesulfonate) and eugenol.
    Dong H; Wang W; Duan Y; Li H; Liu Q; Sun Y; Zhang J
    Fish Physiol Biochem; 2020 Jun; 46(3):909-920. PubMed ID: 31916052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroidogenic Effects of Salinity Change on the Hypothalamus-Pituitary-Gonad (HPG) Axis of Male Chinese Sea Bass (
    Fang Z; Li X; Wang Y; Lu W; Hou J; Cheng J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na
    Zhang X; Wen H; Qi X; Zhang K; Liu Y; Fan H; Yu P; Tian Y; Li Y
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():69-81. PubMed ID: 31129130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of the Na
    Liu Y; Wen H; Qi X; Zhang X; Zhang K; Fan H; Tian Y; Hu Y; Li Y
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():286-298. PubMed ID: 30660028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male).
    Su H; Ma D; Zhu H; Liu Z; Gao F
    BMC Genomics; 2020 Jan; 21(1):110. PubMed ID: 32005144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges.
    Tian Y; Wen H; Qi X; Zhang X; Li Y
    Gene; 2019 Feb; 684():20-29. PubMed ID: 30332608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slc4 Gene Family in Spotted Sea Bass (Lateolabrax maculatus): Structure, Evolution, and Expression Profiling in Response to Alkalinity Stress and Salinity Changes.
    Wang LY; Tian Y; Wen HS; Yu P; Liu Y; Qi X; Gao ZC; Zhang KQ; Li Y
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33126655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass.
    Tian Y; Wen H; Qi X; Zhang X; Sun Y; Li J; He F; Zhang M; Zhang K; Yang W; Huang Z; Ren Y; Li Y
    Int J Biol Macromol; 2020 Jul; 155():50-60. PubMed ID: 32220641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses.
    Su H; Ma D; Fan J; Zhong Z; Li Y; Zhu H
    Ecotoxicol Environ Saf; 2023 Feb; 251():114523. PubMed ID: 36638565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases.
    Giffard-Mena I; Lorin-Nebel C; Charmantier G; Castille R; Boulo V
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jul; 150(3):332-8. PubMed ID: 18485772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoregulation and salinity effects on the expression and activity of Na+,K(+)-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.).
    Jensen MK; Madsen SS; Kristiansen K
    J Exp Zool; 1998 Oct; 282(3):290-300. PubMed ID: 9755480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation.
    Lorin-Nebel C; Boulo V; Bodinier C; Charmantier G
    J Exp Biol; 2006 Dec; 209(Pt 24):4908-22. PubMed ID: 17142680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel.
    Lai KP; Li JW; Gu J; Chan TF; Tse WK; Wong CK
    BMC Genomics; 2015 Dec; 16():1072. PubMed ID: 26678671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.