These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36983048)

  • 41. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An ATP-dependent supercoiling topoisomerase of Chlamydomonas reinhardtii affects accumulation of specific chloroplast transcripts.
    Thompson RJ; Mosig G
    Nucleic Acids Res; 1985 Feb; 13(3):873-91. PubMed ID: 2987813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli.
    Cheung KJ; Badarinarayana V; Selinger DW; Janse D; Church GM
    Genome Res; 2003 Feb; 13(2):206-15. PubMed ID: 12566398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis.
    Aubry A; Fisher LM; Jarlier V; Cambau E
    Biochem Biophys Res Commun; 2006 Sep; 348(1):158-65. PubMed ID: 16876125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-talk between topoisomerase I and HU in Escherichia coli.
    Bensaid A; Almeida A; Drlica K; Rouviere-Yaniv J
    J Mol Biol; 1996 Feb; 256(2):292-300. PubMed ID: 8594197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences.
    Napierala M; Bacolla A; Wells RD
    J Biol Chem; 2005 Nov; 280(45):37366-76. PubMed ID: 16166072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New alkaloid antibiotics that target the DNA topoisomerase I of Streptococcus pneumoniae.
    García MT; Blázquez MA; Ferrándiz MJ; Sanz MJ; Silva-Martín N; Hermoso JA; de la Campa AG
    J Biol Chem; 2011 Feb; 286(8):6402-13. PubMed ID: 21169356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay between type 1A topoisomerases and gyrase in chromosome segregation in Escherichia coli.
    Usongo V; Tanguay C; Nolent F; Bessong JE; Drolet M
    J Bacteriol; 2013 Apr; 195(8):1758-68. PubMed ID: 23396913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA gyrase and the supercoiling of DNA.
    Cozzarelli NR
    Science; 1980 Feb; 207(4434):953-60. PubMed ID: 6243420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novobiocin-dependent topA deletion mutants of Escherichia coli.
    Hammond GG; Cassidy PJ; Overbye KM
    J Bacteriol; 1991 Sep; 173(17):5564-7. PubMed ID: 1653212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional responses of Bacillus subtillis and thuringiensis to antibiotics and anti-tumour drugs.
    Sioud M; Boudabous A; Cekaite L
    Int J Mol Med; 2009 Jan; 23(1):33-9. PubMed ID: 19082504
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F; Weisslocker-Schaetzel M; Klostermeier D
    J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914.
    Kern G; Palmer T; Ehmann DE; Shapiro AB; Andrews B; Basarab GS; Doig P; Fan J; Gao N; Mills SD; Mueller J; Sriram S; Thresher J; Walkup GK
    J Biol Chem; 2015 Aug; 290(34):20984-20994. PubMed ID: 26149691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization.
    Hsu YH; Chung MW; Li TK
    Nucleic Acids Res; 2006; 34(10):3128-38. PubMed ID: 16757578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methods to assay inhibitors of DNA gyrase and topoisomerase IV activities.
    Fisher LM; Pan XS
    Methods Mol Med; 2008; 142():11-23. PubMed ID: 18437302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct regulation of topoisomerase activity by a nucleoid-associated protein.
    Ghosh S; Mallick B; Nagaraja V
    Nucleic Acids Res; 2014; 42(17):11156-65. PubMed ID: 25200077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of bacterial DNA supercoiling.
    Drlica K
    Mol Microbiol; 1992 Feb; 6(4):425-33. PubMed ID: 1313943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of DNA gyrase inhibitors in Escherichia coli topoisomerase I mutants.
    Pruss GJ; Franco RJ; Chevalier SG; Manes SH; Drlica K
    J Bacteriol; 1986 Oct; 168(1):276-82. PubMed ID: 3019999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.