BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36983080)

  • 1. Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients.
    Lo Presti C; Yamaryo-Botté Y; Mondet J; Berthier S; Nutiu D; Botté C; Mossuz P
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia.
    Stuani L; Riols F; Millard P; Sabatier M; Batut A; Saland E; Viars F; Tonini L; Zaghdoudi S; Linares LK; Portais JC; Sarry JE; Bertrand-Michel J
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30366412
    [No Abstract]   [Full Text] [Related]  

  • 3. An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination.
    Pallarès V; Unzueta U; Falgàs A; Sánchez-García L; Serna N; Gallardo A; Morris GA; Alba-Castellón L; Álamo P; Sierra J; Villaverde A; Vázquez E; Casanova I; Mangues R
    J Hematol Oncol; 2020 Apr; 13(1):36. PubMed ID: 32295630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold.
    Griessinger E; Pereira-Martins D; Nebout M; Bosc C; Saland E; Boet E; Sahal A; Chiche J; Debayle D; Fleuriot L; Pruis M; De Mas V; Vergez F; Récher C; Huls G; Sarry JE; Schuringa JJ; Peyron JF
    Cancer Res; 2023 Aug; 83(15):2461-2470. PubMed ID: 37272750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine.
    Tabe Y; Saitoh K; Yang H; Sekihara K; Yamatani K; Ruvolo V; Taka H; Kaga N; Kikkawa M; Arai H; Miida T; Andreeff M; Spagnuolo PA; Konopleva M
    Sci Rep; 2018 Nov; 8(1):16837. PubMed ID: 30442990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids and the cancer stemness regulatory system in acute myeloid leukemia.
    Lim INX; Nagree MS; Xie SZ
    Essays Biochem; 2022 Sep; 66(4):333-344. PubMed ID: 35996953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine.
    Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST
    J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells.
    Spinello I; Saulle E; Quaranta MT; Pasquini L; Pelosi E; Castelli G; Ottone T; Voso MT; Testa U; Labbaye C
    Haematologica; 2019 May; 104(5):973-985. PubMed ID: 30467201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML.
    Daga S; Rosenberger A; Quehenberger F; Krisper N; Prietl B; Reinisch A; Zebisch A; Sill H; Wölfler A
    Cancer Med; 2019 Apr; 8(4):1771-1778. PubMed ID: 30848055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Lactate Metabolism by Inhibiting MCT1 or MCT4 Impairs Leukemic Cell Proliferation, Induces Two Different Related Death-Pathways and Increases Chemotherapeutic Sensitivity of Acute Myeloid Leukemia Cells.
    Saulle E; Spinello I; Quaranta MT; Pasquini L; Pelosi E; Iorio E; Castelli G; Chirico M; Pisanu ME; Ottone T; Voso MT; Testa U; Labbaye C
    Front Oncol; 2020; 10():621458. PubMed ID: 33614502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1.
    Darwish NH; Sudha T; Godugu K; Elbaz O; Abdelghaffar HA; Hassan EE; Mousa SA
    Oncotarget; 2016 Sep; 7(36):57811-57820. PubMed ID: 27506934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic role of TPD52 in acute myeloid leukemia: A retrospective multicohort analysis.
    Ha M; Han ME; Kim JY; Jeong DC; Oh SO; Kim YH
    J Cell Biochem; 2019 Mar; 120(3):3672-3678. PubMed ID: 30203488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Targeted Nano-Parthenolide Molecule against NF-kB in Acute Myeloid Leukemia.
    Darwish NHE; Sudha T; Godugu K; Bharali DJ; Elbaz O; El-Ghaffar HAA; Azmy E; Anber N; Mousa SA
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31163672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.
    Stevens BM; Jones CL; Pollyea DA; Culp-Hill R; D'Alessandro A; Winters A; Krug A; Abbott D; Goosman M; Pei S; Ye H; Gillen AE; Becker MW; Savona MR; Smith C; Jordan CT
    Nat Cancer; 2020 Dec; 1(12):1176-1187. PubMed ID: 33884374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia.
    Landry B; Gül-Uludağ H; Plianwong S; Kucharski C; Zak Z; Parmar MB; Kutsch O; Jiang H; Brandwein J; Uludağ H
    J Control Release; 2016 Feb; 224():8-21. PubMed ID: 26742943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differential activation of metabolic pathways in leukemic cells depending on their genotype and micro-environmental stress.
    Lo Presti C; Fauvelle F; Mondet J; Mossuz P
    Metabolomics; 2020 Jan; 16(1):13. PubMed ID: 31925544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia.
    Zhang Y; Guo H; Zhang Z; Lu W; Zhu J; Shi J
    Exp Cell Res; 2022 Jun; 415(1):113112. PubMed ID: 35346671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism.
    Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P
    Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.
    Pei S; Minhajuddin M; Callahan KP; Balys M; Ashton JM; Neering SJ; Lagadinou ED; Corbett C; Ye H; Liesveld JL; O'Dwyer KM; Li Z; Shi L; Greninger P; Settleman J; Benes C; Hagen FK; Munger J; Crooks PA; Becker MW; Jordan CT
    J Biol Chem; 2013 Nov; 288(47):33542-33558. PubMed ID: 24089526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome.
    Zwaan CM; Kaspers GJ; Pieters R; Hählen K; Janka-Schaub GE; van Zantwijk CH; Huismans DR; de Vries E; Rots MG; Peters GJ; Jansen G; Creutzig U; Veerman AJ
    Blood; 2002 Jan; 99(1):245-51. PubMed ID: 11756178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.