These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 36983082)
1. The Role of Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Kourtidou C; Tziomalos K Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983082 [TBL] [Abstract][Full Text] [Related]
2. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Kato M; Natarajan R Nat Rev Nephrol; 2019 Jun; 15(6):327-345. PubMed ID: 30894700 [TBL] [Abstract][Full Text] [Related]
3. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Qu P; Li L; Jin Q; Liu D; Qiao Y; Zhang Y; Sun Q; Ran S; Li Z; Liu T; Peng L Int J Mol Med; 2024 Nov; 54(5):. PubMed ID: 39301658 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic modification in diabetic kidney disease. Liu Z; Liu J; Wang W; An X; Luo L; Yu D; Sun W Front Endocrinol (Lausanne); 2023; 14():1133970. PubMed ID: 37455912 [TBL] [Abstract][Full Text] [Related]
5. Sodium Butyrate Attenuates Diabetic Kidney Disease Partially via Histone Butyrylation Modification. Zhou T; Xu H; Cheng X; He Y; Ren Q; Li D; Xie Y; Gao C; Zhang Y; Sun X; Xu Y; Huang W Mediators Inflamm; 2022; 2022():7643322. PubMed ID: 35909658 [TBL] [Abstract][Full Text] [Related]
6. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Zheng W; Guo J; Liu ZS Clin Epigenetics; 2021 Apr; 13(1):87. PubMed ID: 33883002 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress as a culprit in diabetic kidney disease. Su S; Ma Z; Wu H; Xu Z; Yi H Life Sci; 2023 Jun; 322():121661. PubMed ID: 37028547 [TBL] [Abstract][Full Text] [Related]
8. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. Li X; Li C; Sun G J Diabetes Res; 2016; 2016():4065382. PubMed ID: 27379253 [TBL] [Abstract][Full Text] [Related]
9. Role of Epigenetic Histone Modifications in Diabetic Kidney Disease Involving Renal Fibrosis. Sun J; Wang Y; Cui W; Lou Y; Sun G; Zhang D; Miao L J Diabetes Res; 2017; 2017():7242384. PubMed ID: 28695133 [TBL] [Abstract][Full Text] [Related]
10. Diabetic kidney diseases revisited: A new perspective for a new era. Fu H; Liu S; Bastacky SI; Wang X; Tian XJ; Zhou D Mol Metab; 2019 Dec; 30():250-263. PubMed ID: 31767176 [TBL] [Abstract][Full Text] [Related]
11. Renal fibrosis as a hallmark of diabetic kidney disease: potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Tang J; Liu F; Cooper ME; Chai Z Expert Opin Ther Targets; 2022 Aug; 26(8):721-738. PubMed ID: 36217308 [TBL] [Abstract][Full Text] [Related]
12. LncRNA H19: a novel player in the regulation of diabetic kidney disease. Wu Q; Huang F Front Endocrinol (Lausanne); 2023; 14():1238981. PubMed ID: 37964955 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. Hirakawa Y; Tanaka T; Nangaku M J Diabetes Investig; 2017 May; 8(3):261-271. PubMed ID: 28097824 [TBL] [Abstract][Full Text] [Related]
14. AGE/RAGE in diabetic kidney disease and ageing kidney. Wu XQ; Zhang DD; Wang YN; Tan YQ; Yu XY; Zhao YY Free Radic Biol Med; 2021 Aug; 171():260-271. PubMed ID: 34019934 [TBL] [Abstract][Full Text] [Related]
15. Role of Histone Modifications in Kidney Fibrosis. Pan S; Yuan T; Xia Y; Yu W; Zhou X; Cheng F Medicina (Kaunas); 2024 May; 60(6):. PubMed ID: 38929505 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease. Mitrofanova A; Fontanella AM; Burke GW; Merscher S; Fornoni A Cells; 2022 Nov; 11(22):. PubMed ID: 36429063 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria in Diabetic Kidney Disease. Ahmad AA; Draves SO; Rosca M Cells; 2021 Oct; 10(11):. PubMed ID: 34831168 [TBL] [Abstract][Full Text] [Related]
18. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Turkmen K Int Urol Nephrol; 2017 May; 49(5):837-844. PubMed ID: 28035619 [TBL] [Abstract][Full Text] [Related]
19. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: a systematic review and meta-analysis. Dai Y; Quan J; Xiong L; Luo Y; Yi B Ren Fail; 2022 Dec; 44(1):862-880. PubMed ID: 35611435 [TBL] [Abstract][Full Text] [Related]
20. Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease. Cansby E; Caputo M; Gao L; Kulkarni NM; Nerstedt A; Ståhlman M; Borén J; Porosk R; Soomets U; Pedrelli M; Parini P; Marschall HU; Nyström J; Howell BW; Mahlapuu M JCI Insight; 2020 Dec; 5(24):. PubMed ID: 33170807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]