These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36983551)

  • 1. A New Species
    Li J; Yang W; Ren J; Cao B; Zhu X; Lin L; Ye W; Zhao R
    J Fungi (Basel); 2023 Mar; 9(3):. PubMed ID: 36983551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.
    Gupta DK; Rühl M; Mishra B; Kleofas V; Hofrichter M; Herzog R; Pecyna MJ; Sharma R; Kellner H; Hennicke F; Thines M
    BMC Genomics; 2018 Jan; 19(1):48. PubMed ID: 29334897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China.
    Liu S; Fu Y; Shi M; Wang H; Guo J
    J Food Sci; 2021 Aug; 86(8):3374-3383. PubMed ID: 34287903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China.
    Fang Y; Sun X; Yang W; Ma N; Xin Z; Fu J; Liu X; Liu M; Mariga AM; Zhu X; Hu Q
    Food Chem; 2014 Mar; 147():147-51. PubMed ID: 24206698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.
    Širić I; Humar M; Kasap A; Kos I; Mioč B; Pohleven F
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18239-52. PubMed ID: 27272918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia.
    Širić I; Kasap A; Bedeković D; Falandysz J
    J Environ Sci Health B; 2017 Mar; 52(3):156-165. PubMed ID: 28121267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Progress on Elements of Wild Edible Mushrooms.
    Liu S; Liu H; Li J; Wang Y
    J Fungi (Basel); 2022 Sep; 8(9):. PubMed ID: 36135689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Arsenic, cadmium, lead and mercury in king bolete Boletus edulis and tolerance limits].
    Falandysz J; Chojnacka A; Frankowska A
    Rocz Panstw Zakl Hig; 2006; 57(4):325-39. PubMed ID: 17713195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Assembly and Pathway Analysis of Edible Mushroom Agrocybe cylindracea.
    Liang Y; Lu D; Wang S; Zhao Y; Gao S; Han R; Yu J; Zheng W; Geng J; Hu S
    Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):341-351. PubMed ID: 32561469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms.
    Lin S; Ching LT; Ke X; Cheung PC
    Int J Med Mushrooms; 2016; 18(10):871-881. PubMed ID: 27910755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium in edible mushrooms.
    Falandysz J
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):256-99. PubMed ID: 18781538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Mycelial Growth and Fruiting Body Development of the Edible Mushroom,
    Suzuki D; Sato Y; Kamasaka H; Kuriki T
    J Appl Glycosci (1999); 2020; 67(3):67-72. PubMed ID: 34354531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany.
    Schlecht MT; Säumel I
    Environ Pollut; 2015 Sep; 204():298-305. PubMed ID: 26016949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita.
    Herzog R; Solovyeva I; Bölker M; Lugones LG; Hennicke F
    Mol Genet Genomics; 2019 Jun; 294(3):663-677. PubMed ID: 30778675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk.
    Melgar MJ; Alonso J; García MA
    Sci Total Environ; 2009 Oct; 407(20):5328-34. PubMed ID: 19631362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edible mushrooms as a ubiquitous source of essential fatty acids.
    Sande D; Oliveira GP; Moura MAFE; Martins BA; Lima MTNS; Takahashi JA
    Food Res Int; 2019 Nov; 125():108524. PubMed ID: 31554069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China.
    Liu B; Huang Q; Cai H; Guo X; Wang T; Gui M
    Food Chem; 2015 Dec; 188():294-300. PubMed ID: 26041195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications.
    Melgar MJ; Alonso J; García MA
    Food Chem Toxicol; 2016 Feb; 88():13-20. PubMed ID: 26702984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying indigenous practices for cultivation of wild saprophytic mushrooms: responding to the need for sustainable utilization of natural resources.
    Wendiro D; Wacoo AP; Wise G
    J Ethnobiol Ethnomed; 2019 Dec; 15(1):64. PubMed ID: 31831075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis.
    Orban A; Weber A; Herzog R; Hennicke F; Rühl M
    BMC Genomics; 2021 May; 22(1):324. PubMed ID: 33947322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.