These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 36983782)
21. Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor. Martin RC; Kronmiller BA; Dombrowski JE BMC Plant Biol; 2020 Apr; 20(1):174. PubMed ID: 32312226 [TBL] [Abstract][Full Text] [Related]
22. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. Chen G; Zhu J; Zhou J; Subburaj S; Zhang M; Han C; Hao P; Li X; Yan Y BMC Plant Biol; 2014 Aug; 14():198. PubMed ID: 25095703 [TBL] [Abstract][Full Text] [Related]
23. Network Analysis of Gene Transcriptions of Manian V; Orozco J; Gangapuram H; Janwa H; Agrinsoni C Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668919 [TBL] [Abstract][Full Text] [Related]
24. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. Higgins JA; Bailey PC; Laurie DA PLoS One; 2010 Apr; 5(4):e10065. PubMed ID: 20419097 [TBL] [Abstract][Full Text] [Related]
25. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Harsant J; Pavlovic L; Chiu G; Sultmanis S; Sage TL J Exp Bot; 2013 Jul; 64(10):2971-83. PubMed ID: 23771979 [TBL] [Abstract][Full Text] [Related]
26. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26. Gagné-Bourque F; Mayer BF; Charron JB; Vali H; Bertrand A; Jabaji S PLoS One; 2015; 10(6):e0130456. PubMed ID: 26103151 [TBL] [Abstract][Full Text] [Related]
27. Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata. Gill US; Uppalapati SR; Nakashima J; Mysore KS BMC Plant Biol; 2015 May; 15():113. PubMed ID: 25953307 [TBL] [Abstract][Full Text] [Related]
28. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E PLoS One; 2014; 9(3):e91814. PubMed ID: 24618597 [TBL] [Abstract][Full Text] [Related]
29. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor. Rivera-Contreras IK; Zamora-Hernández T; Huerta-Heredia AA; Capataz-Tafur J; Barrera-Figueroa BE; Juntawong P; Peña-Castro JM Sci Rep; 2016 Jun; 6():27686. PubMed ID: 27282694 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Correll MJ; Pyle TP; Millar KD; Sun Y; Yao J; Edelmann RE; Kiss JZ Planta; 2013 Sep; 238(3):519-33. PubMed ID: 23771594 [TBL] [Abstract][Full Text] [Related]
31. Heat Stress Regulates the Expression of Genes at Transcriptional and Post-Transcriptional Levels, Revealed by RNA-seq in Chen S; Li H Front Plant Sci; 2016; 7():2067. PubMed ID: 28119730 [TBL] [Abstract][Full Text] [Related]
32. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736 [TBL] [Abstract][Full Text] [Related]
33. Identification of brassinosteroid genes in Brachypodium distachyon. Corvalán C; Choe S BMC Plant Biol; 2017 Jan; 17(1):5. PubMed ID: 28061864 [TBL] [Abstract][Full Text] [Related]
34. Light has a principal role in the Arabidopsis transcriptomic response to the spaceflight environment. Zhou M; Ferl RJ; Paul AL NPJ Microgravity; 2024 Aug; 10(1):82. PubMed ID: 39107298 [TBL] [Abstract][Full Text] [Related]
35. Determination of growth stages and metabolic profiles in Brachypodium distachyon for comparison of developmental context with Triticeae crops. Onda Y; Hashimoto K; Yoshida T; Sakurai T; Sawada Y; Hirai MY; Toyooka K; Mochida K; Shinozaki K Proc Biol Sci; 2015 Jul; 282(1811):. PubMed ID: 26156770 [TBL] [Abstract][Full Text] [Related]
36. Suppression of Phytochrome-Interacting Factors Enhances Photoresponses of Seedlings and Delays Flowering With Increased Plant Height in Hoang QTN; Tripathi S; Cho JY; Choi DM; Shin AY; Kwon SY; Han YJ; Kim JI Front Plant Sci; 2021; 12():756795. PubMed ID: 34650585 [TBL] [Abstract][Full Text] [Related]
37. Transcriptional responses to phosphate starvation in Brachypodium distachyon roots. Zhao P; Wang L; Yin H Plant Physiol Biochem; 2018 Jan; 122():113-120. PubMed ID: 29216498 [TBL] [Abstract][Full Text] [Related]
38. Brachypodium distachyon is a suitable host plant for study of Barley yellow dwarf virus. Tao Y; Nadege SW; Huang C; Zhang P; Song S; Sun L; Wu Y Virus Genes; 2016 Apr; 52(2):299-302. PubMed ID: 26814813 [TBL] [Abstract][Full Text] [Related]
39. Submergence Stress Alters the Expression of Clock Genes and Configures New Zeniths and Expression of Outputs in Medina-Chávez L; Camacho C; Martínez-Rodríguez JA; Barrera-Figueroa BE; Nagel DH; Juntawong P; Peña-Castro JM Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239900 [TBL] [Abstract][Full Text] [Related]
40. Developmental and physiological responses of Brachypodium distachyon to fluctuating nitrogen availability. David LC; Girin T; Fleurisson E; Phommabouth E; Mahfoudhi A; Citerne S; Berquin P; Daniel-Vedele F; Krapp A; Ferrario-Méry S Sci Rep; 2019 Mar; 9(1):3824. PubMed ID: 30846873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]