These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36984151)

  • 1. A Novel Feedforward Model of Piezoelectric Actuator for Precision Rapid Cutting.
    Zhong B; Liu S; Wang C; Jin Z; Sun L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive compound control based on generalized Bouc-Wen inverse hysteresis modeling in piezoelectric actuators.
    Zhang Q; Gao Y; Li Q; Yin D
    Rev Sci Instrum; 2021 Nov; 92(11):115004. PubMed ID: 34852500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Compound Control Based on the Piezo-Actuated Stage with Bouc-Wen Model.
    Fang J; Wang J; Li C; Zhong W; Long Z
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric Hysteresis Modeling of Hybrid Driven Three-Dimensional Elliptical Vibration Aided Cutting System Based on an Improved Flower Pollination Algorithm.
    Fu X; Gong H; Lu M; Zhou J; Lin J; Du Y; Zhou R
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced Bouc-Wen model for characterizing rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X
    Rev Sci Instrum; 2018 Nov; 89(11):115002. PubMed ID: 30501291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the modified control matrix for a selected unimorph deformable mirror to compensate the piezoelectric hysteresis effect using the inverse Bouc-Wen model.
    Aghababayee MA; Mosayebi M; Saghafifar H
    Appl Opt; 2022 Mar; 61(9):2293-2305. PubMed ID: 35333247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation.
    Yu S; Xie M; Wu H; Ma J; Li Y; Gu H
    ISA Trans; 2022 May; 124():427-435. PubMed ID: 32081400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Preisach Model Parameters Based on an Improved Particle Swarm Optimization Method for Piezoelectric Actuators in Micro-Manufacturing Stages.
    Yang L; Ding B; Liao W; Li Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model.
    Yang L; Zhao Z; Zhang Y; Li D
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model.
    Li W; Chen X; Li Z
    Rev Sci Instrum; 2013 Nov; 84(11):115003. PubMed ID: 24289430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter Identification of Model for Piezoelectric Actuators.
    Liu D; Dong J; Guo S; Tan L; Yu S
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Hysteresis Modeling of Piezoelectric Actuators Using a Generalized Bouc⁻Wen Model.
    Gan J; Zhang X
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30871100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound Control of Trajectory Errors in a Non-Resonant Piezo-Actuated Elliptical Vibration Cutting Device.
    Zhang C; Shu Z; Yuan Y; Gan X; Yu F
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model.
    Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Rapid Response Characteristics of Piezoelectric Actuators for Ultra-Precision Machining.
    Zhong B; Liao Z; Zhang X; Jin Z; Sun L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model.
    Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis Compensation for a Piezoelectric Actuator of Active Helicopter Rotor Using Compound Control.
    Zhou J; Dong L; Yang W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Control of a Trapezoidal Piezoelectric Bimorph Actuator for Optical Fiber Alignment.
    Wang X; Li J; Lu X
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.