BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36984178)

  • 1. Effect of Mn Content on the Toughness and Plasticity of Hot-Rolled High-Carbon Medium Manganese Steel.
    Wang M; Liang X; Ren W; Tong S; Sun X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Manganese on the Strength-Toughness Relationship of Low-Carbon Copper and Nickel-Containing Hull Steel.
    Zhan Z; Shi Z; Wang Z; Lu W; Chen Z; Zhang D; Chai F; Luo X
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: influences of strain rate and phase constituents.
    Benzing JT; Liu Y; Zhang X; Luecke WE; Ponge D; Dutta A; Oskay C; Raabe D; Wittig JE
    Acta Mater; 2019; 177():. PubMed ID: 33304199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Description of External Force Induced Phase Transformation in Silicon-Manganese (Si-Mn) Transformation Induced Plasticity (TRIP) Steels.
    He Z; Liu H; Zhu Z; Zheng W; He Y; Li L
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile Properties and Microstructure Evolutions of Low-Density Duplex Fe-12Mn-7Al-0.2C-0.6Si Steel.
    Liu S; Ge Y; Liu H; Liu J; Feng Y; Chen C; Zhang F
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of mechanical properties on the phase composition of intercritically annealed medium-Mn steel as the main competitor of high-strength DP steels.
    Skowronek A; Grajcar A; Petrov RH
    Sci Rep; 2024 Apr; 14(1):9567. PubMed ID: 38671039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels.
    Liu C; Peng Q; Xue Z; Wang S; Yang C
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure Evolution and Mechanical Stability of Retained Austenite in Medium-Mn Steel Deformed at Different Temperatures.
    Kozłowska A; Janik A; Radwański K; Grajcar A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31546804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Correlation Between Fracture Toughness and Charpy Impact Energy of Cryogenic Steel Welds.
    An G; Hong S; Park J; Han I
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4921-4925. PubMed ID: 33691891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Reversed Austenite Behavior in Determining Microstructure and Toughness of Advanced Medium Mn Steel by Welding Thermal Cycle.
    Chen Y; Wang H; Cai H; Li J; Chen Y
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mo and Cr on the Microstructure and Properties of Low-Alloy Wear-Resistant Steels.
    Xia T; Ma Y; Zhang Y; Li J; Xu H
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explanation of the PLC Effect in Advanced High-Strength Medium-Mn Steels. A Review.
    Kozłowska A; Grzegorczyk B; Morawiec M; Grajcar A
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Plastic Deformation Instabilities at Elevated Temperatures in Hot-Rolled Medium-Mn Steel.
    Kozłowska A; Grzegorczyk B; Staszuk M; Nuckowski PM; Grajcar A
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantageous Implications of Reversed Austenite for the Tensile Properties of Super 13Cr Martensitic Stainless Steel.
    Wang P; Zheng W; Yu X; Wang Y
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Austenitizing Temperature on Tensile and Impact Properties of a Martensitic Stainless Steel Containing Metastable Retained Austenite.
    Deng B; Yang D; Wang G; Hou Z; Yi H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure Evolution and Mechanical Stability of Retained Austenite in Thermomechanically Processed Medium-Mn Steel.
    Grajcar A; Kilarski A; Kozłowska A; Radwański K
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30736369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test.
    Ma Y; Song W; Bleck W
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28946692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercritical annealing to achieve a positive strain-rate sensitivity of mechanical properties and suppression of macroscopic plastic instabilities in multi-phase medium-Mn steels.
    Benzing JT; Luecke WE; Mates SP; Ponge D; Raabe D; Wittig JE
    Mater Sci Eng A Struct Mater; 2021; 803():. PubMed ID: 34092917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Retained Austenite in Advanced High-Strength Steel.
    Li S; Li K; Zhang L; Feng Y; Liu Z; Cao P; Liu B; Dong J
    Scanning; 2023; 2023():9565903. PubMed ID: 37101707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.