BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36984277)

  • 1. Assessment of Ferritic ODS Steels Obtained by Laser Additive Manufacturing.
    Autones L; Aubry P; Ribis J; Leguy H; Legris A; de Carlan Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.
    Klimiankou M; Lindau R; Möslang A
    Micron; 2005; 36(1):1-8. PubMed ID: 15582472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Nitrogen Atmosphere Annealing of Alloyed Powders on the Microstructure and Properties of ODS Ferritic Steels.
    Strojny-Nędza A; Pietrzak K; Jóźwik I; Bucholc B; Wyszkowska E; Kurpaska Ł; Grabias A; Malinowska A; Chmielewski M
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Different Alloying Strategies on the Mechanical Behavior of Tool Steel Produced by Laser-Powder Bed Fusion.
    Baqerzadeh Chehreh A; Strauch A; Großwendt F; Röttger A; Fechte-Heinen R; Theisen W; Walther F
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processability of a Hot Work Tool Steel Powder Mixture in Laser-Based Powder Bed Fusion.
    Hantke N; Großwendt F; Strauch A; Fechte-Heinen R; Röttger A; Theisen W; Weber S; Sehrt JT
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Oxygen Content on Microstructure and Tensile Properties of a 22Cr-5Al ODS Steel.
    Zhang Y; Yan Y; Zhai Y; Qin W; Che H; Wang T; Cao R
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Microstructural Evolution of Ferritic ODS Steel Powders during Mechanical Alloying.
    Nowik K; Zybała R; Oksiuta Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.
    Lee JH; Kim JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6169-73. PubMed ID: 24205622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation Hardening in a New Manufacturing Route of Ferritic Oxide Dispersion-Strengthened Fe-14Cr Cladding Tube.
    Salliot F; Borbély A; Sornin D; Logé R; Spartacus G; Leguy H; Baudin T; de Carlan Y
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.
    Han YS; Mao X; Jang J
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7524-8. PubMed ID: 24245285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Diffusivities of Yttrium, Titanium and Oxygen Calculated by Ab Initio Molecular Dynamics in Molten 316L Oxide-Dispersion-Strengthened Steel Fabricated via Additive Manufacturing.
    Wang Z; Yang S; Lawson SB; Doddapaneni VVK; Albert M; Sutton B; Chang CH; Pasebani S; Xu D
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility Study on Additive Manufacturing of Ferritic Steels to Meet Mechanical Properties of Safety Relevant Forged Parts.
    Mally L; Werz M; Weihe S
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels.
    Yang Y; Doñate-Buendía C; Oyedeji TD; Gökce B; Xu BX
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C.
    Svoboda J; Luptáková N; Jarý M; Dymáček P
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Precipitated Particle Refinement in High-Cr ODS Steels by Microalloying Element Addition.
    Li Y; Zhang L; Long D; Yu L; Li H
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Mechanical and Corrosion Properties of Powder Metallurgy Austenitic, Ferritic, and Martensitic Stainless Steels by Liquid Phase Sintering.
    Ku MH; Tsao LC; Tsai YJ; Lin ZJ; Wu MW
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable CrMnNi steels processed by laser powder bed fusion: experimental assessment of elementary mechanisms contributing to microstructure, properties and residual stress.
    Richter J; Bartzsch G; Scherbring S; Bolender A; Vollmer M; Mola J; Volkova O; Niendorf T
    Sci Rep; 2022 Dec; 12(1):21862. PubMed ID: 36529751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Beam Powder Bed Fusion of Water Atomized Iron and Powder Blends.
    Kirchner A; Klöden B; Franke-Jurisch M; Walther G; Weißgärber T
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot Deformation Behavior and Microstructure Evolution of 14Cr ODS Steel.
    Zhao Q; Yu L; Ma Z; Li H; Wang Z; Liu Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29925771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.