These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36984324)
21. An investigation of the toxic effects of combustion products--analysis of smoke components. Rio J; Manning T; Bidanset J; Balkon J; Trombetta L; Barletta M J Anal Toxicol; 1988; 12(5):274-8. PubMed ID: 3226125 [TBL] [Abstract][Full Text] [Related]
22. Toxic Combustion Product Yields as a Function of Equivalence Ratio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons. Purser DA Polymers (Basel); 2016 Sep; 8(9):. PubMed ID: 30974605 [TBL] [Abstract][Full Text] [Related]
23. Analysis of toxic effluents released from PVC carpet under different fire conditions. Stec AA; Readman J; Blomqvist P; Gylestam D; Karlsson D; Wojtalewicz D; Dlugogorski BZ Chemosphere; 2013 Jan; 90(1):65-71. PubMed ID: 22960058 [TBL] [Abstract][Full Text] [Related]
24. Effects of expandable graphite on the flame-retardant and mechanical performances of rigid polyurethane foams. Wang XC; Sun YP; Sheng J; Geng T; Turng LS; Guo YG; Liu XH; Liu CT J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34794133 [TBL] [Abstract][Full Text] [Related]
25. Halogenated flame retardants: do the fire safety benefits justify the risks? Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442 [TBL] [Abstract][Full Text] [Related]
26. Salen Complexes as Fire Protective Agents for Thermoplastic Polyurethane: Deep Electron Paramagnetic Resonance Spectroscopy Investigation. Naik AD; Bourbigot S; Bellayer S; Touati N; Ben Tayeb K; Vezin H; Fontaine G ACS Appl Mater Interfaces; 2018 Jul; 10(29):24860-24875. PubMed ID: 29957994 [TBL] [Abstract][Full Text] [Related]
27. Thermal conductivity and combustion properties of wheat gluten foams. Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837 [TBL] [Abstract][Full Text] [Related]
28. Fire Phenomena of Rigid Polyurethane Foams. Günther M; Lorenzetti A; Schartel B Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961091 [TBL] [Abstract][Full Text] [Related]
29. Combustion Behavior and Thermal Degradation Properties of Wood Impregnated with Intumescent Biomass Flame Retardants: Phytic Acid, Hydrolyzed Collagen, and Glycerol. Li L; Chen Z; Lu J; Wei M; Huang Y; Jiang P ACS Omega; 2021 Feb; 6(5):3921-3930. PubMed ID: 33585771 [TBL] [Abstract][Full Text] [Related]
30. Novel MoS Zhi M; Liu Q; Zhao Y; Gao S; Zhang Z; He Y ACS Omega; 2020 Feb; 5(6):2734-2746. PubMed ID: 32095697 [TBL] [Abstract][Full Text] [Related]
31. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Wang H; Liu Q; Li H; Zhang H; Yan S Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904525 [TBL] [Abstract][Full Text] [Related]
32. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams. Davis R; Li YC; Gervasio M; Luu J; Kim YS ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711 [TBL] [Abstract][Full Text] [Related]
33. Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. Strąkowska A; Członka S; Kairytė A Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276537 [TBL] [Abstract][Full Text] [Related]
34. Hazard identification posed by plant protection products during warehouse fires. Przybysz J; Borucka M; Mizera K; Gajek A Sci Total Environ; 2024 Apr; 922():171243. PubMed ID: 38431164 [TBL] [Abstract][Full Text] [Related]
35. Structural Fire Fighting Ensembles: Accumulation and Off-gassing of Combustion Products. Kirk KM; Logan MB J Occup Environ Hyg; 2015; 12(6):376-83. PubMed ID: 25626009 [TBL] [Abstract][Full Text] [Related]
36. Composites of Semi-Rigid Polyurethane Foams with Keratin Fibers Derived from Poultry Feathers and Flame Retardant Additives. Wrześniewska-Tosik K; Ryszkowska J; Mik T; Wesołowska E; Kowalewski T; Pałczyńska M; Sałasińska K; Walisiak D; Czajka A Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33317209 [TBL] [Abstract][Full Text] [Related]
37. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. Jiang Q; Li P; Liu Y; Zhu P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407 [TBL] [Abstract][Full Text] [Related]
38. Assessment of chemical asphyxia caused by toxic gases generated from rigid polyurethane foam (RPUF) fires. Son MH; Kim Y; Jo YH; Kwon M Forensic Sci Int; 2021 Nov; 328():111011. PubMed ID: 34571246 [TBL] [Abstract][Full Text] [Related]
39. Impact of Sunflower Press Cake and Its Modification with Liquid Glass on Polyurethane Foam Composites: Thermal Stability, Ignitability, and Fire Resistance. Kairytė A; Członka S; Šeputytė-Jucikė J; Vėjelis S Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365537 [TBL] [Abstract][Full Text] [Related]
40. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Choi KW; Kim JW; Kwon TS; Kang SW; Song JI; Park YT Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]