These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36984706)

  • 1. Impact of Physical and Chemical Modification of the Surface of Porous Al
    Bednarek A; Dybowski K; Romaniak G; Grabarczyk J; Kaczorowski W; Sobczyk-Guzenda A
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Combined Gas and Water Permeances Method for Revealing the Deposition Morphology of GO Grafting on Ceramic Membranes.
    Galata E; Veziri CM; Theodorakopoulos GV; Romanos GE; Pavlatou EA
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Properties of CVD-Grown Graphene Transferred by Wet and Dry Transfer Processes.
    Yoon MA; Kim C; Kim JH; Lee HJ; Kim KS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer.
    Kafiah F; Khan Z; Ibrahim A; Atieh M; Laoui T
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological and corrosion performance of the plasma-sprayed conformal ceramic coating on selective laser melted CoCrMo alloy.
    Li HQ; Guo H; Shen FL; Lou DJ; Xia WL; Fang XY
    J Mech Behav Biomed Mater; 2021 Jul; 119():104520. PubMed ID: 33872921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of ceramic composites based on ZrO
    Santos CD; Coutinho IF; Amarante JEV; Alves MFRP; Coutinho MM; Moreira da Silva CR
    J Mech Behav Biomed Mater; 2021 Apr; 116():104372. PubMed ID: 33540326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic Surface Treatment and Interrupted Atomic Layer Deposition for Highly Resistive Al
    Jeon JH; Jerng SK; Akbar K; Chun SH
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29637-29641. PubMed ID: 27735182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of different surface modifications on micro-structure and adhesion of zirconia ceramic: an in vitro study].
    Siwen L; Shishi L; Yanhong W; Hongmei M
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2017 Feb; 35(1):43-50. PubMed ID: 28326726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passivating Graphene and Suppressing Interfacial Phonon Scattering with Mechanically Transferred Large-Area Ga
    Gebert M; Bhattacharyya S; Bounds CC; Syed N; Daeneke T; Fuhrer MS
    Nano Lett; 2023 Jan; 23(1):363-370. PubMed ID: 36410928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition.
    Lozano MS; Bernat-Montoya I; Angelova TI; Mojena AB; Díaz-Fernández FJ; Kovylina M; Martínez A; Cienfuegos EP; Gómez VJ
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
    Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barrier Diamond-like Carbon Coatings on Polydimethylsiloxane Substrate.
    Kaczorowski W; Batory D; Szymański W; Lauk K; Stolarczyk J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Electrical Properties of Al
    Fisichella G; Schilirò E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO
    García-Miranda Ferrari A; Foster CW; Brownson DAC; Whitehead KA; Banks CE
    Sci Rep; 2019 Sep; 9(1):12814. PubMed ID: 31492903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-damage plasma surface modification method of stacked graphene bilayers for configurable wettability and electrical properties.
    Lin CH; Tsai MS; Chen WT; Hong YZ; Chien PY; Huang CH; Woon WY; Lin CT
    Nanotechnology; 2019 Jun; 30(24):245709. PubMed ID: 30731440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.