These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36984709)

  • 1. Resistance of Ion Exchange Membranes in Aqueous Mixtures of Monovalent and Divalent Ions and the Effect on Reverse Electrodialysis.
    Veerman J; Gómez-Coma L; Ortiz A; Ortiz I
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters.
    Veerman J
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs.
    Kaya TZ; Altıok E; Güler E; Kabay N
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.
    Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.
    Rijnaarts T; Huerta E; van Baak W; Nijmeijer K
    Environ Sci Technol; 2017 Nov; 51(21):13028-13035. PubMed ID: 28950057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent selective electrodialysis: Modelling multi-ionic transport across selective membranes.
    Rehman D; Ahdab YD; Lienhard JH
    Water Res; 2021 Jul; 199():117171. PubMed ID: 33989855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.
    Rijnaarts T; Shenkute NT; Wood JA; de Vos WM; Nijmeijer K
    ACS Sustain Chem Eng; 2018 May; 6(5):7035-7041. PubMed ID: 29755894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane.
    Chanda S; Tsai PA
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis.
    Villafaña-López L; Reyes-Valadez DM; González-Vargas OA; Suárez-Toriello VA; Jaime-Ferrer JS
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31689967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes.
    Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review.
    Kotoka F; Merino-Garcia I; Velizarov S
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32707798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).
    Pawlowski S; Galinha CF; Crespo JG; Velizarov S
    Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities.
    White N; Misovich M; Yaroshchuk A; Bruening ML
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6620-8. PubMed ID: 25738468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.