These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 36984771)
1. Mapping the Metabolic Niche of Citrate Metabolism and Chen F; Willenbockel HF; Cordes T Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984771 [TBL] [Abstract][Full Text] [Related]
2. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. Brown TL; Bainbridge MN; Zahn G; Nye KL; Porter BE Ther Adv Rare Dis; 2024; 5():26330040241263972. PubMed ID: 39091896 [TBL] [Abstract][Full Text] [Related]
5. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Huard K; Brown J; Jones JC; Cabral S; Futatsugi K; Gorgoglione M; Lanba A; Vera NB; Zhu Y; Yan Q; Zhou Y; Vernochet C; Riccardi K; Wolford A; Pirman D; Niosi M; Aspnes G; Herr M; Genung NE; Magee TV; Uccello DP; Loria P; Di L; Gosset JR; Hepworth D; Rolph T; Pfefferkorn JA; Erion DM Sci Rep; 2015 Dec; 5():17391. PubMed ID: 26620127 [TBL] [Abstract][Full Text] [Related]
6. Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood-brain barrier. Kopel JJ; Bhutia YD; Sivaprakasam S; Ganapathy V Biochem J; 2021 Feb; 478(3):463-486. PubMed ID: 33544126 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of a species-specific inhibitor selective for human Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY). Higuchi K; Kopel JJ; Sivaprakasam S; Jaramillo-Martinez V; Sutton RB; Urbatsch IL; Ganapathy V Biochem J; 2020 Nov; 477(21):4149-4165. PubMed ID: 33079129 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence. Zwart R; Peeva PM; Rong JX; Sher E J Pharmacol Exp Ther; 2015 Nov; 355(2):247-54. PubMed ID: 26324167 [TBL] [Abstract][Full Text] [Related]
9. Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Henke C; Töllner K; van Dijk RM; Miljanovic N; Cordes T; Twele F; Bröer S; Ziesak V; Rohde M; Hauck SM; Vogel C; Welzel L; Schumann T; Willmes DM; Kurzbach A; El-Agroudy NN; Bornstein SR; Schneider SA; Jordan J; Potschka H; Metallo CM; Köhling R; Birkenfeld AL; Löscher W Neurobiol Dis; 2020 Sep; 143():105018. PubMed ID: 32682952 [TBL] [Abstract][Full Text] [Related]
10. Structure and inhibition mechanism of the human citrate transporter NaCT. Sauer DB; Song J; Wang B; Hilton JK; Karpowich NK; Mindell JA; Rice WJ; Wang DN Nature; 2021 Mar; 591(7848):157-161. PubMed ID: 33597751 [TBL] [Abstract][Full Text] [Related]
12. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Hardies K; de Kovel CG; Weckhuysen S; Asselbergh B; Geuens T; Deconinck T; Azmi A; May P; Brilstra E; Becker F; Barisic N; Craiu D; Braun KP; Lal D; Thiele H; Schubert J; Weber Y; van 't Slot R; Nürnberg P; Balling R; Timmerman V; Lerche H; Maudsley S; Helbig I; Suls A; Koeleman BP; De Jonghe P; Brain; 2015 Nov; 138(Pt 11):3238-50. PubMed ID: 26384929 [TBL] [Abstract][Full Text] [Related]
13. A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth. Dirckx N; Zhang Q; Chu EY; Tower RJ; Li Z; Guo S; Yuan S; Khare PA; Zhang C; Verardo A; Alejandro LO; Park A; Faugere MC; Helfand SL; Somerman MJ; Riddle RC; de Cabo R; Le A; Schmidt-Rohr K; Clemens TL Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2212178119. PubMed ID: 36322718 [TBL] [Abstract][Full Text] [Related]
14. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders. Akhtar MJ; Khan SA; Kumar B; Chawla P; Bhatia R; Singh K Mol Cell Biochem; 2023 Aug; 478(8):1669-1687. PubMed ID: 36495372 [TBL] [Abstract][Full Text] [Related]
15. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. Li Z; Li D; Choi EY; Lapidus R; Zhang L; Huang SM; Shapiro P; Wang H J Biol Chem; 2017 Aug; 292(33):13890-13901. PubMed ID: 28655760 [TBL] [Abstract][Full Text] [Related]
17. Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Selch S; Chafai A; Sticht H; Birkenfeld AL; Fromm MF; König J Sci Rep; 2018 Jul; 8(1):11330. PubMed ID: 30054523 [TBL] [Abstract][Full Text] [Related]
18. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors. Pajor AM; de Oliveira CA; Song K; Huard K; Shanmugasundaram V; Erion DM Mol Pharmacol; 2016 Dec; 90(6):755-765. PubMed ID: 27683012 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Klotz J; Porter BE; Colas C; Schlessinger A; Pajor AM Mol Med; 2016 May; 22():310-21. PubMed ID: 27261973 [TBL] [Abstract][Full Text] [Related]
20. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice. Irizarry AR; Yan G; Zeng Q; Lucchesi J; Hamang MJ; Ma YL; Rong JX PLoS One; 2017; 12(4):e0175465. PubMed ID: 28406943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]