These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36984944)

  • 21. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting.
    Eghbali P; Younesian D; Moayedizadeh A; Ranjbar M
    Sci Rep; 2020 Oct; 10(1):16338. PubMed ID: 33004956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibration Excitation and Suppression of a Composite Laminate Plate Using Piezoelectric Actuators.
    Her SC; Chen HY
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester.
    Zhao H; Wei X; Zhong Y; Wang P
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.
    Lueke J; Badr A; Lou E; Moussa WA
    Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of an acoustic black hole vibration absorber at the end of a cantilever beam.
    McCormick CA; Shepherd MR
    J Acoust Soc Am; 2019 Jun; 145(6):EL593. PubMed ID: 31255124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.
    Yang A; Li P; Wen Y; Lu C; Peng X; He W; Zhang J; Wang D; Yang F
    Rev Sci Instrum; 2014 Jun; 85(6):066103. PubMed ID: 24985867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Damping Enhancement Using Axially Functionally Graded Porous Structure Based on Acoustic Black Hole Effect.
    Zheng W; He S; Tang R; He S
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.