These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36984944)

  • 41. On the Efficiency of a Piezoelectric Energy Harvester under Combined Aeroelastic and Base Excitation.
    Stamatellou AM; Kalfas AI
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.
    Chun I; Lee HW; Kwon KH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9253-7. PubMed ID: 25971046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
    Yu H; Yue Q; Zhou J; Wang W
    Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System.
    Lian Z; Wang Q; Zhu C; Zhao C; Zhao Q; Wang Y; Hu Z; Xu R; Lin Y; Chen T; Liu X; Xu X; Liu L; Xiao X; Xu M
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transmission loss of plates with embedded acoustic black holes.
    Feurtado PA; Conlon SC
    J Acoust Soc Am; 2017 Sep; 142(3):1390. PubMed ID: 28964102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Note: Vibration energy harvesting based on a round acoustic fence.
    Cui XB; Huang CP; Hu JH
    Rev Sci Instrum; 2015 Jul; 86(7):076101. PubMed ID: 26233415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An energy harvesting type ultrasonic motor.
    Wang G; Xu W; Gao S; Yang B; Lu G
    Ultrasonics; 2017 Mar; 75():22-27. PubMed ID: 27898301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bidirectional Piezoelectric Energy Harvester.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31489888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and Experimental Investigation of an Ultra-Low Frequency, Low-Intensity, and Multidirectional Piezoelectric Energy Harvester with Liquid as the Energy-Capture Medium.
    Li N; Yang F; Luo T; Qin L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838069
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Point mobility of a cylindrical plate incorporating a tapered hole of power-law profile.
    O'Boy DJ; Bowyer EP; Krylov VV
    J Acoust Soc Am; 2011 Jun; 129(6):3475-82. PubMed ID: 21682374
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams.
    Huang X; Zhang C; Dai K
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Funnel Type PVDF Underwater Energy Harvester with Spiral Structure Mounted on the Harvester Support.
    Lee J; Ahn J; Jin H; Lee CH; Jeong Y; Lee K; Seo HS; Cho Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.