BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36984961)

  • 1. Efficient Focusing of Aerosol Particles in the Microchannel under Reverse External Force: A Numerical Simulation Study.
    Qin Y; Fan LL; Zhao L
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrodynamic focusing microchannel based on micro-weir shear lift force.
    Yang RJ; Hou HH; Wang YN; Lin CH; Fu LM
    Biomicrofluidics; 2012 Sep; 6(3):34110. PubMed ID: 23919100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section.
    Kim U; Kwon JY; Kim T; Cho Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Control of Colloidal Trajectories in Inertial Microfluidics Using the Saffman Effect.
    Rühle F; Schaaf C; Stark H
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32549244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex particle focusing via hydrodynamic force in viscoelastic fluids.
    Lee DJ; Brenner H; Youn JR; Song YS
    Sci Rep; 2013 Nov; 3():3258. PubMed ID: 24247252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects.
    Yuan D; Pan C; Zhang J; Yan S; Zhao Q; Alici G; Li W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing particles by induced charge electrokinetic flow in a microchannel.
    Song Y; Wang C; Li M; Pan X; Li D
    Electrophoresis; 2016 Feb; 37(4):666-75. PubMed ID: 26640123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Zhou Y
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays.
    Zhao Q; Zhang J; Yan S; Yuan D; Du H; Alici G; Li W
    Sci Rep; 2017 Jan; 7():41153. PubMed ID: 28112225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput inertial particle focusing in a curved microchannel: Insights into the flow-rate regulation mechanism and process model.
    Xiang N; Yi H; Chen K; Sun D; Jiang D; Dai Q; Ni Z
    Biomicrofluidics; 2013; 7(4):44116. PubMed ID: 24404049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.
    Fan LL; He XK; Han Y; Du L; Zhao L; Zhe J
    Biomicrofluidics; 2014 Mar; 8(2):024108. PubMed ID: 24738015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels.
    Lu SY; Malekanfard A; Beladi-Behbahani S; Zu W; Kale A; Tzeng TR; Wang YN; Xuan X
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32344887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoretic choking phenomenon in a converging-diverging microchannel for Janus particles.
    Zhou T; Ji X; Shi L; Zhang X; Deng Y; Joo SW
    Electrophoresis; 2019 Mar; 40(6):993-999. PubMed ID: 30371959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays.
    Zhao Q; Yan S; Yuan D; Zhang J; Du H; Alici G; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1406-1412. PubMed ID: 28809710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.