These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36984961)
1. Efficient Focusing of Aerosol Particles in the Microchannel under Reverse External Force: A Numerical Simulation Study. Qin Y; Fan LL; Zhao L Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984961 [TBL] [Abstract][Full Text] [Related]
2. Enhanced viscoelastic focusing of particle in microchannel. Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948 [TBL] [Abstract][Full Text] [Related]
3. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces. Bao F; Hao H; Yin Z; Tu C Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507 [TBL] [Abstract][Full Text] [Related]
4. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel. Kwon JY; Kim T; Kim J; Cho Y Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390 [TBL] [Abstract][Full Text] [Related]
5. A hydrodynamic focusing microchannel based on micro-weir shear lift force. Yang RJ; Hou HH; Wang YN; Lin CH; Fu LM Biomicrofluidics; 2012 Sep; 6(3):34110. PubMed ID: 23919100 [TBL] [Abstract][Full Text] [Related]
6. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section. Kim U; Kwon JY; Kim T; Cho Y Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276 [TBL] [Abstract][Full Text] [Related]
7. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
8. Optimal Control of Colloidal Trajectories in Inertial Microfluidics Using the Saffman Effect. Rühle F; Schaaf C; Stark H Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32549244 [TBL] [Abstract][Full Text] [Related]
9. Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Lee DJ; Brenner H; Youn JR; Song YS Sci Rep; 2013 Nov; 3():3258. PubMed ID: 24247252 [TBL] [Abstract][Full Text] [Related]
10. Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects. Yuan D; Pan C; Zhang J; Yan S; Zhao Q; Alici G; Li W Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404368 [TBL] [Abstract][Full Text] [Related]
11. Focusing particles by induced charge electrokinetic flow in a microchannel. Song Y; Wang C; Li M; Pan X; Li D Electrophoresis; 2016 Feb; 37(4):666-75. PubMed ID: 26640123 [TBL] [Abstract][Full Text] [Related]
12. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW). Sriphutkiat Y; Zhou Y Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852 [TBL] [Abstract][Full Text] [Related]
13. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes. Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543 [TBL] [Abstract][Full Text] [Related]
14. An Extensive Study of the Influence of Key Flow Variables on Printed Line Quality Outcomes during Aerosol Jet Printing Using Coupled Three-Dimensional Numerical Models. Zhang H; Xu H; Cui L; Pan Z; Lee PH; Jung MK; Choi JP Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998262 [TBL] [Abstract][Full Text] [Related]
15. High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays. Zhao Q; Zhang J; Yan S; Yuan D; Du H; Alici G; Li W Sci Rep; 2017 Jan; 7():41153. PubMed ID: 28112225 [TBL] [Abstract][Full Text] [Related]
16. Continuous Focusing of Particles by AC-Electroosmosis and Induced Dipole Interactions. Wiegerinck HTM; Wood JA; Eijkel JCT; Lammertink RGH; Frankel I; Ramos A Langmuir; 2024 Sep; 40(38):19988-96. PubMed ID: 39269030 [TBL] [Abstract][Full Text] [Related]
17. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
18. High-throughput inertial particle focusing in a curved microchannel: Insights into the flow-rate regulation mechanism and process model. Xiang N; Yi H; Chen K; Sun D; Jiang D; Dai Q; Ni Z Biomicrofluidics; 2013; 7(4):44116. PubMed ID: 24404049 [TBL] [Abstract][Full Text] [Related]
19. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures. Fan LL; He XK; Han Y; Du L; Zhao L; Zhe J Biomicrofluidics; 2014 Mar; 8(2):024108. PubMed ID: 24738015 [TBL] [Abstract][Full Text] [Related]
20. Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels. Lu SY; Malekanfard A; Beladi-Behbahani S; Zu W; Kale A; Tzeng TR; Wang YN; Xuan X Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32344887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]