These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36984961)

  • 21. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays.
    Zhang T; Shen Y; Kiya R; Anggraini D; Tang T; Uno H; Okano K; Tanaka Y; Hosokawa Y; Li M; Yalikun Y
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle Timing Control and Alignment in Microchannel Flow by Applying Periodic Force Control Using Dielectrophoretic Force.
    Tatsumi K; Kawano K; Shintani H; Nakabe K
    Anal Chem; 2019 May; 91(10):6462-6470. PubMed ID: 30933475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Dispersion Rate of Airborne Nanoparticles in a Gas-Liquid Dual-Microchannel Separated by a Porous Membrane: A Numerical Study.
    Sheidaei Z; Akbarzadeh P; Guiducci C; Kashaninejad N
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of optical control for a soft particle in a microchannel.
    Moon JY; Choi SB; Lee JS; Tanner RI; Lee JS
    Phys Rev E; 2019 Feb; 99(2-1):022607. PubMed ID: 30934346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical simulation on the opto-electro-kinetic patterning for rapid concentration of particles in a microchannel.
    Kim D; Shim J; Chuang HS; Kim KC
    Biomicrofluidics; 2015 May; 9(3):034102. PubMed ID: 26015839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on Flow Characteristics of Working Medium in Microchannel Simulated by Porous Media Model.
    Xue Y; Guo C; Gu X; Xu Y; Xue L; Lin H
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Chemical Analysis of the Gas-Aerosol Particle Interface.
    Qian Y; Deng GH; Rao Y
    Anal Chem; 2018 Sep; 90(18):10967-10973. PubMed ID: 30111093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined electrokinetic and shear flows control colloidal particle distribution across microchannel cross-sections.
    Lochab V; Prakash S
    Soft Matter; 2021 Jan; 17(3):611-620. PubMed ID: 33201951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel.
    Del Giudice F; Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Nov; 13(21):4263-71. PubMed ID: 24056525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model.
    Verbanck S; Ghorbaniasl G; Biddiscombe MF; Dragojlovic D; Ricks N; Lacor C; Ilsen B; de Mey J; Schuermans D; Underwood SR; Barnes PJ; Vincken W; Usmani OS
    J Aerosol Med Pulm Drug Deliv; 2016 Dec; 29(6):525-533. PubMed ID: 27337643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved curved-boundary scheme for lattice Boltzmann simulation of microscale gas flow with second-order slip condition.
    Dai W; Wu H; Liu Z; Zhang S
    Phys Rev E; 2022 Feb; 105(2-2):025310. PubMed ID: 35291094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concentration profiles of ions and particles under hydrodynamic focusing in Y-shaped square microchannel.
    Sato N; Kawashima D; Takei M
    Sci Rep; 2021 Jan; 11(1):2585. PubMed ID: 33510410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pattern Transition on Inertial Focusing of Neutrally Buoyant Particles Suspended in Rectangular Duct Flows.
    Yamashita H; Akinaga T; Sugihara-Seki M
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.