BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36985013)

  • 1. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction.
    Quan J; Yan B; Sang X; Zhong C; Li H; Qin X; Xiao R; Sun Z; Dong Y; Zhang H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function.
    Chen C; Lee B; Li NN; Chae M; Wang D; Wang QH; Lee B
    Opt Express; 2021 May; 29(10):15089-15103. PubMed ID: 33985216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructed quality improvement with a stochastic gradient descent optimization algorithm for a spherical hologram.
    Pan Y; Wang J; Wu Y; Peng H; Yang H; Chen C
    Appl Opt; 2022 Jun; 61(17):5341-5349. PubMed ID: 36256220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent.
    Wang Z; Chen T; Chen Q; Tu K; Feng Q; Lv G; Wang A; Ming H
    Opt Express; 2023 Feb; 31(5):7413-7424. PubMed ID: 36859872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent.
    Wang J; Wang J; Zhou J; Zhang Y; Wu Y
    Opt Express; 2023 Sep; 31(19):31142-31157. PubMed ID: 37710641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating Multi-Depth 3D Holograms Using a Fully Convolutional Neural Network.
    Yan X; Liu X; Li J; Zhang Y; Chang H; Jing T; Hu H; Qu Q; Wang X; Jiang X
    Adv Sci (Weinh); 2024 May; ():e2308886. PubMed ID: 38725135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High quality holographic 3D display with enhanced focus cues based on multiple directional light reconstruction.
    Wang Z; Liang L; Chen T; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2024 Mar; 49(6):1548-1551. PubMed ID: 38489447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layered holographic stereogram based on inverse Fresnel diffraction.
    Zhang H; Zhao Y; Cao L; Jin G
    Appl Opt; 2016 Jan; 55(3):A154-9. PubMed ID: 26835948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-generated hologram with occlusion effect using layer-based processing.
    Zhang H; Cao L; Jin G
    Appl Opt; 2017 May; 56(13):F138-F143. PubMed ID: 28463308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography.
    Shui X; Zheng H; Xia X; Yang F; Wang W; Yu Y
    Opt Express; 2022 Dec; 30(25):44814-44826. PubMed ID: 36522896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating DNN Training Through Selective Localized Learning.
    Krithivasan S; Sen S; Venkataramani S; Raghunathan A
    Front Neurosci; 2021; 15():759807. PubMed ID: 35087370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-valued layer-based hologram calculation.
    Yasuki D; Shimobaba T; Makowski M; Suszek J; Sypek M; Kakue T; Ito T
    Opt Express; 2022 Feb; 30(5):7821-7830. PubMed ID: 35299536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid approach for fast occlusion processing in computer-generated hologram calculation.
    Gilles A; Gioia P; Cozot R; Morin L
    Appl Opt; 2016 Jul; 55(20):5459-70. PubMed ID: 27409327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase dual-resolution networks for a computer-generated hologram.
    Yu T; Zhang S; Chen W; Liu J; Zhang X; Tian Z
    Opt Express; 2022 Jan; 30(2):2378-2389. PubMed ID: 35209379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnification and quality improvement for an optical cylindrical holographic display.
    Wang J; Guo Z; Wu Y
    Appl Opt; 2022 Dec; 61(35):10478-10483. PubMed ID: 36607109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive layer-based computer-generated holograms.
    Yao Y; Zhang Y; Fu Q; Duan J; Zhang B; Cao L; Poon TC
    Opt Lett; 2024 Mar; 49(6):1481-1484. PubMed ID: 38489430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient descent based algorithm of generating phase-only holograms of 3D images.
    Liu S; Takaki Y
    Opt Express; 2022 May; 30(10):17416-17436. PubMed ID: 36221566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From image pair to a computer generated hologram for a real-world scene.
    Ding S; Cao S; Zheng YF; Ewing RL
    Appl Opt; 2016 Sep; 55(27):7583-92. PubMed ID: 27661586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.